GeoSELECT.ru



Архитектура / Реферат: Записка к расчетам (Архитектура)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Записка к расчетам (Архитектура)



КОМПОНОВКА КОНСТРУКТИВНОЙ СХЕМЫ СБОРНОГО ПЕРЕКРЫТИЯ.

Ригели поперечных рам – трехпролетные, на опорах жестко соединены с
крайними и средними колоннами. Ригели расположен в поперечном
направлении, за счет чего достигается большая жесткость здания.
Поскольку нормативная нагрузка на перекрытие (4 кПа) меньше 5 кПа,
принимаем многопустотные плиты. Наименьшая ширина плиты – 1400 мм.
Связевые плиты расположены по рядам колонн. В среднем пролете
предусмотрен такой один доборный элемент шириной 1000 мм. В крайних
пролетах предусмотрены по монолитному участку шириной 425 мм.
В продольном направлении жесткость здания обеспечивается вертикальными
связями, устанавливаемыми в одном среднем пролете по каждому ряду колонн.
В поперечном направлении жесткость здания обеспечивается по релико-
связевой системе: ветровая нагрузка через перекрытие, работающие как
горизонтальные жесткие диски, предается на торцевые стены, выполняющие
функции вертикальных связевых диафрагм, и поперечные рамы.
Поперечные же рамы работают только на вертикальную нагрузку.


1. Расчет многопустотной преднопряженной плиты по двум группам предельных
состояний.
1. Расчет многопустотной преднопряженной плиты по I группе предельных
состояний
2.1.1 Расчетный пролет и нагрузки.

Для установления расчетного пролета плиты предварительно задается
размерами – ригеля:
высота h=(1/8+1/15)*
l= (1/11)*5.2=0.47?0.5 м. ширина b=(0.3/0.4)*hbm=0.4*0.5=0.2 m.
При опирании на ригель поверху расчетный пролет плиты равен: l0=l-
b/2=6-0.2/2=5.9 m.

Таблица 1. Нормативные и расчетные нагрузки на 1 м2 перекрытия
|Вид нагрузки |Нормативная |Коэффициент |Расчетная |
| |нагрузка, |надежности по |нагрузка, |
| |Н/м2 |нагрузке |Н/м2 |
|Постоянная: |2800 |1,1 |3080 |
|-собственный вес | | | |
|многопустотной | | | |
|плиты | | | |
|-то же слоя |440 |1,3 |570 |
|цементного | | | |
|раствора, | | | |
|g=20 мм, | | | |
|R=2000кг/м3 |240 |1,1 |270 |
|-тоже керамических| | | |
|плиток, | | | |
|g=13 мм, | | | |
|R=1300кг/м3 | | | |
|Итого |3480 |- |3920 |
|Временная |4000 |1,2 |4800 |
|В т.ч. длительная |2500 |1,2 |3000 |
|краткосрочная |1500 |1,2 |1800 |
|Полная |7480 |- |8720 |
|В т.ч. постоянная | | | |
|и длительная |5980 |- |- |
|кратковременная |1500 |- |- |

Расчетная нагрузка на 1 м длины при ширине плиты 1,4 м с учетом
коэффициента надежности по назначению здания јn=0,95: постоянная
g=3920*1.4*0.95=5.21 кН/м; полная g+ ? = 8720*1,4*0,95=11,6 кН/м;
временная ?=4800*1,4*0,95=6,38 кН/м.
Нормативная нагрузка на 1 м длины: постоянная g=3480*1.4*0.95=4.63
кН/м; полная g+ ?=7480*1.4*0.95=9.95 кН/м, в точности постоянная и
длительная (g+ ?)l=5980*1.4*0.95=7.95 кН/м.

2.1.2 Усилие от расчетных и нормативных нагрузок.

От расчетной нагрузки М=( g+ ?)l02/8=11.6*103*5.92/8=50.47 кН*м;
Q==( g+ ?)l0/2=11.6*103*5.92/2=34.22 кН
От нормативной полной нагрузки М=9.95*103*5.92/8=43.29 кН*м.
Q=9.95*103*5.92/2=29.35 кН. От нормативной постоянной и длительной
нагрузки М=7.95*103*5.92/8=34.59 кН*м.

2.1.3 Установление размеров сечения плиты.

Высота сечения многопустотной преднопряженной плиты h=l0/30=5.9/30?0.2
м. (8 круглых пустот диаметром 0.14 м).
Рабочая высота сечения h0=h-e=0.2-0.03?0.17 м
Размеры: толщина верхней и нижней полок (0.2-0.14) *0.5=0.03 м.
Ширина ребер: средних 0.025 м, крайних 0.0475 м.
В расчетах по предельным состоянием, I группы расчетная толщина сжатой
полки таврого сечения hf’=0.03 м; отношение hf’/h=0.03/0.2=0.15>0.1-при
этом в расчет вводится вся ширина полки bf’=1.36 м;рр расчетная ширина
ребра b=1.36-8*0.14=0.24 м.



Рисунок 2 – Поперечные сечения плиты а) к расчету прочности
б)
к расчету по образованию трещин.


2.1.4 Характеристики прочности в стене и арматуры.

Многопустотную преднопряженную плиту армируем стержневой арматурой
класса А-IV с электротермическим способом натяжения на упоры форм. К
трещиностойкости плиты предъявляют требования 3 категории. Изделие
подвергаем тепловой обработке при атмосферном давлении.
Бетон тяжелый класса В30, соответствующий напрягаемой арматуре.
Призменная прочность нормативная Rbn=Rb,ser=22 МПа, расчетная Rb=17
МПа, коэффициент условий работы бетона jb=0.9; нормативное сопротивление
при растяжении Rbth=Rbt,ser=1.8 МПа, расчетное Rbt=1.2 МПа; начальный
модуль упругости Еb=29 000 МПа.
Передаточная прочность бетона Rbp устанавливается так чтобы
обжатии отношения Gbp/Rbp? 0.79
Арматура продольных ребер – класса А-IV, нормативное
сопротивление Rsn=590 МПа, расчетное сопротивление Rs=510 МПа, модуль
упругости Еs=190 000 МПа.
Преднапряжение арматуры принимаем равным
Gsp=0.75Rsn=0.75*590*106=442.5 МПа.
Проверяем выполнение условия: при электротермическом способе натяжения
р=30+360/l=30+360/6=90 МПа.
Gsp+p=(442.5+90)*106=532.5 МПаjspmin=0.1,
где n=5 – число напрягаемых стержней;
Коэффициент точности натяжения при благоприятном преднапряжении jsp=1-
?jsp=1-0,14=0,86
При проверке на образование трещин в верхней для плиты при обжатии
принимаем jsp=1+0,14=1,14.
Преднапряжение с учетом точности натяжения Gsp=0.86*442.5*106=380.6
МПа.

2.1.5 Расчет прочности плиты по сечению, нормальному к продольной оси.
M=50.47 кН*м.

Вычисляем ?m=М/(Rb*bf’*h20)=50.47*103/(0.9*17*106*1.36*0.172)=0.084.
По таблице 3.1[1] находим: ?=0,955; ?=0,09; х= ?*h0=0,09*0,17=0,015
м ?=1.2, где ?=1,2 – для арматуры
класса А-IV
Принимаем jSG= ?=1,2.
Вычисляем площадь сечения растянутой арматуры:
Аs=М/ jSG*RS* ?*h0=50.47*103/1.2*510*106*0.955*.17=5.08*10-4 м2.
Принимаем 5ш12 А-IV с А3=5,65*10-4 м2.

2. Расчет многопустотной плиты по предельным состояниям II группы.
1. Геометрические характеристики приведенного сечения.

Круглое очертание пустот заменяем эквивалентным квадратным со стороной
h=0.9*d=0.9*0.14=0.126 m.
Толщина полок эквивалентного сечения hf’=hf=(0.2-0.126)*0.5=0.037 м.
Ширина ребра b=1.36-8*0.126=0.35 м. Ширина пустот:1.36—0.35=1.01; Площадь
приведенного сечения Ared=1,36*0,2-1,01*0,126=0,145 м2.
Расстояние от нижней грани до ц.т. приведенного сечения
y0=0.5*h=0.5*0.2=0.1 m.
Момент инерции сечения Jred=1.36*0.23/12-1.01*0.1263/12=7.38*10-4 m4.
Момент сопротивления сечения по нижней зоне Wred= Jred/ y0=7.38*10-
4/0.1=7.38*10-3 m3; то же по верхней зоне: Wred’=7.38*10-3 m3.
Расстояние от ядровой точки, наиболее удаленной от растянутой зоны
(верхней) до ц.т. сечения.
? = ?n*(Wred/Ared)=0.85*(7.38*10-3/0.185)=0.034 m.
то же, наименее удаленной от растянутой зоны (нижней): ?Tnf =
0.034m.
здесь: ?n = 1.6- Gbp/Rbp=1.6-0.75=0.85.
Отношение напряжения в бетоне от нормативных нагрузок и усилия обжатия к
расчетному сопротивлению бетона для предельного состояния II группы
предварительно принимаем равным 0,75.
Упругопластический момент сопротивления по растянутой зоне Wpl=j*
Wred=1.5*7.38*10-3=11.07*10-3 m3; здесь j=1.5 – для двутаврового сечения
при 220d=20*0.0012=0.24m.
На средней опоре принята арматура 2ш10 А-III+2ш20 А-III с As=7.85*10-4
m2.
h0=0.44 m;
?=7.65*10-4/0.2*0.44=0.0089;
?=0.0089*365*106/0.9*11.5*106=0.314;
?=1-0.5*0.314=0.843.
Ms=As*Rs*h0*?=7.65*10-4*365*106*0.843*0.44=106.28 кН*м.
Графически определим точки теоретического обрыва двух стержней ш20А –
III. Поперечная сила в первом сечении Q4=90 кН; qsw=67.95 кН/м; Длина
анкеровки W4=90*103/2*67.95*103+5*0.02=0.76m>20d=20*0.02=0.4m.

На крайней опоре принята арматура 2ш14 А – III с As=3.08*10-4 m2.
Арматура располагается в один ряд.
h0=0.47m;
?=3.08*10-4/0.2*0.47=0.0033;
?=0.0033*365*106/0.9*11.5*106=0.116;
?=1-0.5*0.116=0.942.
Ms=As*Rs*h0*?=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.
Поперечная сила в ---- обрыва стержней Qs=100 кН;
Qsw=67.95 кН/м; Длина анкеровки –
W5=100*103/2*67.95*103+5*0.014=0.8m>20d=20*0.014=0.28m.



3.10 Расчет стыка сборных элементов ригеля.



Рассматриваем вариант бетонированного стыка. В этом случае изгибающий
момент на опоре воспринимается соединительными и бетоном, заполняющий
полость между торцами ригелей и колонной.
Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота
сечения ригеля
h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20;
Rb=11.5 МПа.
gbr=0.9;
Арматура – класса А-III, Rs=365 МПа.
Вычисляем: ?m=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195
По таблице 3.1[1] находим: ?=0,89 и определяем площадь сечения
соединительных стержней:
As=M/Rs*h0* ?=94.96*103/365*106*0.89*0.485=6.03*10-4 m2.
Принимаем: 2ш20 А-III с As=6.28*10-4 m2.
Длину сварных швов определяем следующим образом:
Slm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН,
где N=M/h0*?=94.96*103/0.89*0.485=220 кН.
Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов
в случае перераспределение моментов вследствие пластических деформаций.
При двух стыковых стержнях и двусторонних швах длина каждого шва будет
равна :
lw=Slw/4+0.01=0.22/4+0.01=0.06 m.
Конструктивное требование: lw=5d=5*0.02=0.1 m.
Принимаем l=0.1m
Площадь закладной детали из условия работы на растяжение:
A=N/Rs=220*103/210*106=10.5*10-4 m2.
Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м;
A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2.
Длина стыковых стержней складывается из размера сечения колонны, двух
зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m.

3. Расчет внецентренно сжатой колонны.
1. Определение продольных сил от расчетных усилий.

Грузовая площадь средней колонны при сетке колонны 6х52, м равна
Агр=6*5,2=31,2 м2.
Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95:
Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66
кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого:
Gперекр=138,72 кН.
Временная нагрузка от перекрытия одного этажа с учетом jn=0.95:
Qвр=4800*31,2*0,95=142,27 кН, в точности длительная:
Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35
кН.
Постоянная нагрузка при весе кровли и плиты 4 КПа составляет:
Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны:
Qcol=6,86 кН;
Итого: Gпокр=141,08 кН.
Снеговая нагрузка для города Москвы – при коэффициентах надежности по
нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5
кН, в точности длительная:
Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН.
Продольная сила колонны I этажа от длительных нагрузок :
Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки
N=(608.81+29.05+53.35)*103=691.21 кН.

2. Определение изгибающих моментов колонны от расчетных нагрузок.

Определяем максимальный момент колонн – при загружении 1+2 без
перераспределения моментов. При действии длительных нагрузок:
М21=(?*g+?*?)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м.
N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м.
При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= -
119,85 кН*м;
М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м.
Разность абсолютных значений опорных моментов в узле рамы: при
длительных нагрузках
?Мl=(102.65-81.19)*103=21.46 кН*м;
?М=(119,85-89,52)*103=30,33 кН*м.
Изгибающий момент колонны I этажа: М1l=0.6*?Мl=0.6*21.46*103=12.88
кН*м; от полной нагрузки: М1=0,6*?М=0,6*30,33*103=18,2 кН*м.
Вычисляем изгибающие моменты колонны, соответствующие максимальным
продольным силам; для этого используем загружение пролетов ригеля по
схеме 1.
От длительных нагрузок : ?Мl=(0,1-0,091)*44,46*103*5,22=10,82 кН*м;
Изгибающий момент колонны I этажа: М1l=0.6*10.82*103=6.5 кН*м.
От полных нагрузок: ?М=(0,01-0,091)*52,31*103*5,22=12,73 кН*м;
изгибающий момент колонны I этажа: М1=0,6*12,73*103=7,64 кН*м.

3. Характеристики прочности бетона и арматуры.

Бетон тяжелый класса В20; Rb=11.5 МПа; jb2=0.9; Eb=27000 МПа.
Арматура класса А-III, Rs=365 МПа; Es=200 000 МПа.
Комбинация расчетных усилий: max N=691.21 кН, в точности от длительных
нагрузок Nl=608.81 кН и соответствующий момент М1=7,64 кН*м, в точности от
длительных нагрузок M1l=6.5 кН*м.
Максимальный момент М=18,2 кН*м, в точности Ml=12.88 кН*м и
соответствующее загружению 1+2 значение N=691.21*103-142.27*103/2=620.1 кН,
в точности Nl=608.81*103-88.92*103/2=564.35 кН.

4. Подбор сечений симметричной арматуры As= As’.

Приведем расчет по второй комбинаций усилий.
Рабочая высота сечения колонны h0=h-a=0.25-0.04=0.21 m; ширина b=0.25 m.
Эксцентриситет силы е0=M/N=18.2*103/620*103=0.029 m. Случайный
эксцентриситет е0=h/30=0.25/30=0.008 m, или е0=l/600=4.2/600=0.029m>
случайного, его и принимаем для расчета статически неопределимой системы.
Находим значение моментов в сечении относительно оси, проходящий через
ц.т. наименее сжатой (растянутой) арматуры.
При длительной нагрузки: : М1l=Мl+Nl(h/2-
a)=12.88*103+564.35*103(0.25/2-0.04)=60.85 кН*м; при полной нагрузки:
М1=18,2*103+620,1*103*0,085=70,91 кН*м.
Отношение l0/?=4.2/0.0723=58.1>14
Расчетную длину многоэтажных зданий при жестком соединении ригеля с
колоннами в сборных перекрытиях принимаем равной высоте этажа l0=l. В
нашем случае l0=l=4,2 м.
Для тяжелого бетона: ?l=1+M1l/Ml=1+60.95*103/70.91*103=1.86. Значение
j=l0/h=0.029/0.25=0.116?R.

2) ?S= ?n(e/h0-1+ ?n/2)/1-S’=1.14*(0.13/0.21-1+1.14/2)/1-0.19=0.27>0
j’=a’/h0=0.04/0.21=0.19.

3) ?= ?n(1- ?R)+2* ?S* ?R /1- ?R+2* ?S=(1.14*(1-0.6)+2*0.27*0.6)/1-
0.6+2*0.27=0.83> ?R
Определяем площадь сечения арматуры:
As=As’=N/Rs*(e/h0- ?*(1- ?/2)/ ?n)/1-j’=620.1*103/365*103*(0.13/0.21-
0.83*(1-0.83)/1.14)/1-0.19=
=4.05*10-4 m2.
Принимаем 2ш18 А-III с As=5.09*10-4 m2.
Проверяем коэффициенты армирования: ?=2*As/A=2*5.09*10-
4/0.252=0.016Q=37.71 кН
–удовлетворяется.
Проверка по сжатой наклонной полосе:
?w=Asw/b*S=0.392*10-4/0.2*0.15=0.0013;
?s=Es/Eb=170*109/23*109=7.4;
?w1=1+5* ?s*?=1+5*7.4*0.0013=1.05;
?b1=1-0.01*Rb=1-0.01*0.9*8.5=0.92;
Условия прочности:
Qmax=45.83 кН?0.3* ?b1*Rb*b*h0=0.3*1.05*0.92*0.9*8.5*106*0.2*0.265=117.5 кН
– удовлетворяется.







Реферат на тему: Запорная арматура

СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 .Общая часть
1.1 Назначение и условия работы заданной детали
1.2 Технические условия на приемку детали
1.3 Материал детали и его характеристика
1.4 Анализ технологичности конструкции детали

2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Тип производства и его характеристика
2.2 0пределение такта выпуска деталей
2.3 Выбор метода производства заготовок
2.4 Определение припусков на обработку
2.5 Расчет размеров заготовки и коэффициента использования металла
2.6 План операций обработки детали
2.7 Выбор баз
2.8 Разделение операций на установки и переходы
2.9 Подбор оборудования по операциям
2.10 Подбор приспособлений, режущего и измерительного инструмента по
операциям
2.11 Определение промежуточных припусков и размеров
2.12 Расчет режимов резания по нормативам
2.13 Аналитический расчет режимов резания на две разнородные операции

2.14 Расчет норм времени на все операции, установление разрядов

2.15 “Экономическое обоснование выбранного варианта обработки


3.КОНСТРУКТОРСКАЯ ЧАСТЬ
3.1 Проектирование специального режущего инструмента
3.2 Проектирование измерительного инструмента
3.3 Проектирование станочного приспособления для фрезерной операции

4 ПРОИЗВОДСТВЕННЫЕ РАСЧЕТЫ И ПЛАНИРОВКА УЧАСТКА
4.1 Расчет количества технологического оборудования и его загрузки

4.2 Выбор потребного количества подъемно-транспортного оборудования

4.3 Расчет количества основных и вспомогательных рабочих

4.4 Расчет производственных площадей, описание планировки участка


5 ОРГАНИЗАЦИОННАЯ ЧАСТЬ
5.1 Организация рабочих мест и системы их обслуживания
5.2 Мероприятия по охране груда и технике безопасности

5.3 Мероприятия по экономии металла и энергии
5.4 Определение годовой потребности материалов, инструментов,
энергии и воды

6 ЭКОНОМИЧЕСКАЯ ЧАСТЬ
6.1 Определение стоимости основных фондов
6.2 Определение стоимости материалов
6.З Определение стоимости малоценного инструмента и приспособлений
6.4 Определение стоимости всех видов энергии и воды
6.5 Определение фонда заработной платы
6.6 Смета цеховых расходов
6.7 Расчеты калькуляции цеховой себестоимости единицы продукции
6.8 Расчет экономической эффективности проекта и уровня рентабельности
6.9 Технико-экономические показатели участка
Вывод
Список литературы
Лист замечаний нормоконтролера
Графические материалы
Лист 1 ф А2 "План участка"
Лист 2 ф А2 "Корпус"
Лист 3 ф А2 "Корпус отливка"
Лист 4 ф А1 "Карта наладки"
Лист 5 ф А3 "Метчики ручные для метрической резьбы"
Лист 6 ф А3 "Пробки резьбовые"
Лист 7 ф А1 "Приспособление фрезерное"
Лист 8 ф А1 "Приспособление фрезерное"



ВВЕДЕНИЕ
В настоящее время Республика Казахстан нуждается в поднятии и
восстановлении пришедшего за последние годы в непригодность оборудования
запорной арматуры.
В президентской программе "Казахстан-2030" по поднятию экономики
Республики Казахстан большое внимание уделяется поднятию и развитию
сельского хозяйства, а так как запорная арматура является неотъемлемой
частью оборудования сельского хозяйства, то возникает необходимость
создавать специализированные мастерские по ремонту запорной арматуры на
местах.
В данной дипломной работе предложен проект специализированной
мастерской, которая может производить текущий и капитальный ремонт запорной
арматуры.
С созданием этой мастерской создаются новые рабочие места, уменьшаются
затраты на ремонт и обслуживание оборудования.



1 ОБЩАЯ ЧАСТЬ

1.1 НАЗНАЧЕНИЕ И УСЛОВИЯ РАБОТЫ ДЕТАЛИ

Корпус ГЛ 21003-100АСБ является базовой деталью вентиля. Вентиль
представляет собой клапан со шпинделем, ввинчиваемым в резьбу неподвижной
ходовой- гайки, расположенной в крышке или бугеле. Применение резьбы,
обладающей свойствами самоторможения, позволит оставлять тарелку клапана в
любом положении с уверенностью, что это положение сохранится и не будет
самопроизвольно изменяться под действием давления среды.
Использование резьбы позволяет применять малые усилия на маховике для
управления вентиля. Вентиль отличается простотой конструкции и создает
хорошие условия для обеспечения надежной плотности при закрытом положении
затвора.
В силу этих причин вентили получили очень широкое применение главным
образом в запорной арматуре.
Вентили предназначены для работы на трубопроводах и газопроводах
(вода, пар, агрессивные среды Ру = 6 МПа (60кгс/см2)),


1.2 ТЕХНИЧЕСКИЕ УСЛОВИЯ НА ПРИЕМКУ ДЕТАЛИ

1) Допускается наплавка 15х15 Н9Г2С HВ=200 ТУ 2 078I-084-77
2) Для вентилей с электроприводом на плавку производить электродом
ЦМ-6Л-5,0-2.
3) Неуказанные литейные радиусы до 6 мм.
4) Неуказанные предельные отклонения размеров отверстий по H14 валов по
h14 остальных - по ± (IT14 / 2)
5) На торце остатка прибыли наличие следов автогенной резки не влияющей
на толщину стенки.
6) Для общепромышленного выпуска торец остатка прибыли допускается не
обрабатывать.
7) Маркировать знак шрифтом № 14 по ГОСТ 4666-75 товарный
знак завода изготовителя.


1.3 МАТЕРИАЛ ДЕТАЛИ И ЕГО характеристика.

Деталь - корпус ГЛ21003-100АСВ изготавливается из стали марки 25JI
ГОСТ 977-75 отливки первой группы.
Для изготовления отливок применяют основную или кислую мартеновскую
или электросталь.
Химический состав должен соответствовать требованиям, указанным в
таблице 1.
Таблица 1 - Химический состав.
|Сталь |С |Mn |Si |P |S |Cr |Ni |Cu |
|марки: | | | | | | | | |
|25Л |0,22 -0,30|0,35 - 0,90|0,20 - 0,52|0,06 |0,06 |0,30 |0,30 |0,30 |
|1050-74 | | | | | | | | |


1.4 АНАЛИЗ ТЕХНОЛОГИЧНОСТИ КОНСТРУКЦИИ ДЕТАЛИ

Одним из важнейших факторов, влияющих на характер технологических
процессов, является технологичность конструкции.
Конструкция корпуса ГЛ210З-100 АСБ сложной конфигурации, но эта
конструкция имеет удобные технологические базы, которые обеспечивают
требуемую ориентацию и надежное крепление заготовки на станке при
возможности обработки её с нескольких сторон и свободного подвода
инструмента к обрабатываемым поверхностям. Корпус имеет достаточную
жесткость, при которой исключена возможность вибрации в процессе обработки
или недопустимых деформаций от сил резания и закрепления.



2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 ТИП ПРОИЗВОДСТВА И ЕГО ХАРАКТЕРИСТИКА

Годовая программа выписка вентиля ГЛ 21003 - 100 АСБ условно принято
35000 штук,
Учитывая массу детали и годовую программу, тип производства
определяется по коэффициенту
КЗ.О. = Q / PM = 8 / 7 = 1,14 ;
где Q- число различных операций;
РM - число рабочих мест , на которых выполняются данные
операции,
Производство крупносерийное.
В крупносерийном производстве за каждым рабочим местом закреплена одна
операция, которая выполняется длительное время без переналадки оборудования
на другие операции с использованием специальной оснастки.
Специальная оснастка широко автоматизирует и механизирует
технологические процессы, поточные методы работы. Такая организация труда
обеспечивает высокую производительность и сравнительно низкую себестоимость
продукции.



2.2 0ПРЕДЕЛЕНИЕ ТАКТА ВЫПУСКА ДЕТАЛЕЙ

Величина такта рассчитывается на основания принятого в проекте
двухсменного режима работы оборудования.
Такт - это интервал времени , через который периодически производится
выпуск изделий определенного наименования и типоразмера.
Такт определяется по формуле [7]:
t = ,
где: t - такт выпуска в минутах;
Fy - действительный годовой фонд времени работы оборудования в час.;
N - годовая программа выпуска изделия.
t = = 6,88 мин


2.3 ВЫБОР МЕТОДА ПРОИЗВОДСТВА ЗАГОТОВОК

Руководствуясь конструкцией детали, материалом, техническими
требованиями, - масштабом производства и задачами, в целях экономии металла
принимаем метод изготовления заготовки - литьё в песчаные формы. Этот метод
применяется для сложных фасонных заготовок.
В современном производстве и разработанном технологическом процессе,
опоки с полуформами, изготовленными на формовочных машинах, поступают для
сборки на столы. Одновременно конвейером подаются стержни со стержневого
участка. Собранные формы заливаются с транспортера. Металл поступает от
печей с помощью подвесных ковшей. Далее конвейером залитые формы
транспортируют в камеру охлаждения и к выбивной решетке, где происходит
отделение отливки от опок и формовочной смеси.
Точность размеров отливок соответствует I классу.
Отливка требует применения стержневой формовки для образования
внутренних полостей [3].



2.4.ОПРЕДЕЛЕНИЕ ПРИПУСКОВ НА МЕХАНИЧЕСКУЮ ОБРАБОТКУ

Припуском называется слой металла, подлежащий удалению с поверхности
заготовки в процессе ее обработки.
Назначаем припуски на механическую обработку детали корпус ГЛ21003 -
100 АСБ
Масса m = 27,4
Наибольший размер детали 350
Расчетные размеры для заготовки:
Др = Дном.+2 Zо, Таблица 3.6
[4]
где: Др -расчетный диаметр заготовки;
Дном -номинальный диаметр обрабатываемой детали;
Z0 - общий припуск на обработку на одну сторону .
При обработке линейных размеров
Нр = Нном. + Zo, Таблица 3.7 [4]
где: Нр - расчетный размер плоских поверхностей;
Нном. - номинальный размер обработки плоской поверхности.
(230+ 2х4 =238 мм
(115 - 2х4 = 107 мм
(100 - 2х4 = 92 мм
l 20 +4 = 24 мм
l 19 +4 = 23 мм
l 350+4 x2 == 358мм
Допуски, т.е. отклонения на размеры заготовок по ГОСТ I855-55 и AINO 2009-
55:
(238+ 2= 240 мм l 358 мм + 2 = 360 мм
(107 - 2 == 105 мм
(92-2 =90 мм
l 24 мм +1 =25мм
l 23 мм + 1 =24 мм

2. 5 РАСЧЕТ РАЗМЕРОВ ЗАГОТОВКИ И КОЭФФИЦИЕНТА ИСПОЛЬЗОВАНИЯ МЕТАЛЛА

Форма заготовки - фигура сложной, конфигурации.
Объем заготовки определяем по плюсовым допускам, для чего фигуру
разбиваем на 8 элементарных геометрических тел:
F1= ( Р2- r2) ( =(107,52 -572) (= 25 918,14;
V1 = F·h = 25 918,14 · 25 =669 657,3 ;
F2 = ( Р2- r2) ( = (1202 - 502 ) ( = 37 384 ,95;
V2 = F·h = 37 384,95x 22 =. 834 383,2;
F3 = ( P2-г2) ( = ( 8I2- 502 ) ( = 12 758;
V3 = F·h = 12 758 x 8 = I23 432,1;
F4 = ( P2-г2) ( = (65^ 45^) ( = 6 911,5;
V4 = F·h == 6 911,5 x 23 .=168 964,5 ;
F5 = ( P2-г2) ( = ( 87,52 - 52,52) ( = 15393 ,82;
/5 = F·h = 15 393,82 x 40 = 636 753,3 ; _
F6 = ( P2-г2) ( =(602 - 502) x 0,7854 = 3455,76;
V6 = F·h = 3455,76 x 110 = 401 345 ,2 ;
F7 = ( P2-г2) ( = 0,7854 (I302 - 1202) = 1963,5 x. 4 = 7854;
V7 = F·h = 7854 x 120 = 973 860;
F8 = ( P2-г2) ( = ( 752 .- 502) ( = 9 817,47;
V8 = F·h = 9817,47 x 20 = 196 349,4;
Vобщ - 669 657,2 + 834 383,1 + 123 432,1 + 168 964,5 + 636 753,5 +
401 345,2+ + 973 860,3 + 196 349,4= 4 004745,3
G = Y ·V3 = 0,00785 x 4 004 745,3 = 31,450 кг
Так как при подсчёте объёма заготовки невозможно учесть все литейные
радиусы, уклоны, округления, то принимаем их равными 20% от общего веса
заготовки
Cз = + 31,450 = 37,74 кг

Коэффициент использования материалов будет равен [4]:

Ки.м. = Су:Сз;

Ки.м. = 27,4 : 37,74 = 0,73.


2.6 ПЛАН ОПЕРАЦИЙ ОБРАБОТКИ ДЕТАЛИ

05 Операция заготовительная - формовочные машины
10 Операция фрезерная - ГФ 14 00
15 Операция токарная - МК 112
20 Операция автоматная - I Б 284
25 Операция наплавка - ВКСМ - 1000 РБ - 301
30 Операция автоматная - 1Б 284
35 Операция агрегатная - 1 AMI 443
40 Операция слесарная
45 Операция контрольная


2.7 РАЗДЕЛЕНИЕ ОПЕРАЦИЙ НА УСТАНОВКИ И ПЕРЕХОДЫ

05 Операция заготовительная - отливка
10 Операция фрезерная - станок ГФ 1400
Соблюдать инструкцию по ТБ.
1.Установить .снять деталь.
2.Фрезеровать литейные прибыли,
15 Операция токарная - станок ГФ 1400
Соблюдать инструкций по ТБ.
1.Установить, снять деталь,
2 .Точить одновременно два фланца ( 230 мм и торцевать l 350мм с двух
сторон.
20 Операция автоматная - станок 1Б284
Соблюдать- инструкцию по Т Б.
1.Установить, снять деталь.
2.Подрезать торец ( 215 мм.
3.Точить ( 115 мм. t = Змм в упор.
4.Точить ( 124 мм в упор.
5 .Снять фаску на поверхности ( 215 мм.
6.Подрезать торец ( 215 мм, точить ( 135 мм в упор.
25 Наплавка - ВКСМ - 1000 РБ - 301
Соблюдать инструкцию по ТБ.
1.Установить, снять деталь.
2 Наплавить поверхность ( 124мм h = б мм.
30 Операция автоматная - станок 1Б284
Соблюдать инструкции по ТБ.
1.Установить, снять деталь.
2.Точить поверхность ( 124мм,
3.Точить канавку ( 113 мм t =4 мм
4 .Точить ( 120мм.
5.Точить ( 100 мм.
6.Точить ( 120мм.
35 Операция агрегатная - станок 1AMO 443
Соблюдать инструкцию по ТБ.
1.Установить , снять деталь.
2.Сверлить 8 отверстий ( Х4мм.
3.Сверяить 8 отверстий ( 23мм.
Зенковать 8 отверстий ( 18мм.
Сверлить 8 отверстий ( 23мм.
4.Нарезать резьбу MI6 шаг 2 в 8 отверстиях.
40 Операция слесарная - верстак
Соблюдать инструкцию по ТБ.
1.Зачистить заусенца после сверловки.


2.8 ВЫБОР БАЗ

Базой называют поверхность, заменяющую ее совокупность поверхностей,
ось, точку детали или сборочной единицы, по отношению к которым
ориентируются другие детали изделия иди поверхности детали, обрабатываемые
или собираемые на данной операции,
Группу конструкторских баз составляют основные и вспомогательные базы,
учет которых при конструировании (выборе форм поверхностей, их
относительного положения, простановки размеров, разработке норм точности и
т.п.) имеет существенное значение. Основная база определяет положение самой
детали или сборочной единицы в изделии, а вспомогательная база- положение
присоединяемой детали или сборочной единицы относительно данной детали.
Технологической базой называют поверхность, определяющую положение
детали или сборочной единицы в процессе их изготовления .
Станок продольно-фрезерный ГФ I400. Базирование обрабатываемого
изделия производится по фланцам ( 240мм и фланцу ( 215мм. (Призма)
Станок МК 112.
Базирование производится по отверстиям ( 100мм .(Кулачки)
Станок 1Б 284.
Базирование производится по двум фланцам ( 230мм и фланцу ( 215мм.
(Кулачки)
Станок 1АМО 443
Базирование- по двум фланцам ( 230мм. (Призма)


2.9 ПОДБОР ОБОРУДОВАНИЯ ПО ОПЕРАЦИЯМ

10 Операция фрезерная
На фрезерную операцию предлагаем взять продольно-фрезерный специальный
станок модели ГФ 1400 C16H8. Станок предназначен для фрезерования прибылей
одновременно с трех сторон в детали ГЛ 21003 - 100 АСБ.
Материал детали сталь 251-11 ГОСТ 977-75.
Основные данные станка ГФ 1400:
Размеры рабочей поверхности стола по ГОСТ 6955-70:
ширина 500мм
длина 1250мм
Наибольшее перемещение стола 1250мм
Количество подач стола 18
Пределы подач стола 20-1000 мм/мин
Скорость быстрого перемещения стола 4500мм/мин
Количество горизонтальных шпинделей 2
Количество вертикальных шпинделей 1
Наибольшее перемещение гильз шпинделей:
1 шпиндель 200мм
2 шпиндель 200мм
3 шпиндель 200мм
Расстояние от поверхности стола до торца
вертикального шпинделя 30-550 мм
Количество скоростей вращения шпинделей:
1 шпиндель 19
2 шпиндель 19
3 шпиндель 19
Пределы частоты вращения шпинделей:
1 шпиндель 25-1600 об/мин
2шпиндель 25--I600 об/мин
3 шпиндель 25-1600 об/мин
Габаритные размеры станка:
длина 4290мм
ширина 3425мм
высота 2900мм
Мощность главного привода 7,5х3 КВт
Масса станка 13100 кг
Цена 186710 тенге

15 Операция автоматная, токарная
На токарную операцию предлагаем взять специальный фланце-токарный
станок МК 112.
Основные данные станка:
Наибольший диаметр обрабатываемой детали над станиной -40вмм, Расстояние
между центрами 710мм
Длина обработки одним суппортом 640мм
Частота вращения шпинделя 12,5-2000вб/мин
Пределы рабочих подач:
продольных 0,0 7-4,16 мм/об
поперечных 0,04-2,08мм/об
Габариты станка:
ширина 2010мм
длина 2522мм
высота 1324мм
Масса станка 2178кг
Мощность главного привода 7,5кВт
20 Операция автоматная
На токарную операцию предлагаем взять токарный шести шпиндельный
вертикальный полуавтомат модели 1Б284.
Основные данные станка:
Наибольший диаметр устанавливаемого изделия проходящий над направляющими
при повороте стола З6Омм
Наибольший диаметр устанавливаемого изделия над круглой нижней частью
колонны 548мм
Диаметр шпинделя 470мм
Количество шпинделей 6
Наибольший вертикальный ход суппорта 200мм
Габариты станка:
длина 3285мм
ширина 2987мм
высота 4040мм
Масса станка 15000кг
Цена 115430 тенге
Суппорты;
Наибольшее количество суппортов на станке 5
Количество суппортов различных видов:
простой вертикальный суппорт 1
суппорт последовательного действия по наладке
универсальный суппорт
суппорт сверлильной головки

Количество ступеней подач 22
Число оборотов в минуту 20-224
Подачи на оборот шпинделя 0,08-5,00мм
Длительность поворота стола 3,4 сек
Мощность ЗО кВт
25 Операция наплавка BKCM-IOOO РБ-301
30 Операция автоматная 1Б284
35 Операция агрегатная
На агрегатную операцию предлагаем взять горизонтальный трехсторонний
сверлильно-резьбонарезной 40-шпиндельный с четырех позиционным поворотным
столом станок модели IAM0443.
Выполняемые операции: сверление, зенкование, резьбонарезание.
Основные данные станка:
Габариты станка:
длина 6350мм
ширина 4860мм
высота 2500мм
Масса станка 23000кг
Цена 150798 тенге

Мощность электродвигателя главного
движения 30кВт
1. Стол силовой УМ2464-011 со шпиндельной коробкой
расположение горизонтальное
ход подвижных частей агрегата 500мм
шпиндельная коробка:
габарит 800х720мм
количество шпинделей 8
мощность электродвигателя главного
движения 5,5кBт
2. Стол силовой УМ2474-012 со шпиндельной коробкой
расположение горизонтальное
ход подвижных частей агрегата 800мм
шпиндельная коробка:
габарит 1200х720мм
количество шпинделей 24
мощность электродвигателя главного
движения 17,0кВт
3. Стол силовой 5У4651С со шпиндельной коробкой
расположение горизонтальное
ход подвижных частей агрегата 400мм
шпиндельная коробка:
габарит 800х720мм
количество шпинделей 8
мощность электродвигателя главного
движения 7,5кВт



2.10 ПОДБОР ПРИСПОСОБЛЕНИИ. РЕЖУЩЕГО И ИЗМЕРИТЕЛЬНОГО ИНСТРУМЕНТА ПО
ОПЕРАЦИЯМ

10 Операция фрезерная станок ГФ 1400
Для закрепления обрабатываемой детали ГЛ 21003-100АСБ
"Корпус вентилей" предназначено одноместное пневматическое приспособление.
Обрабатываемая деталь устанавливается на жесткие опоры призмы и
наклонные плоскости планок. Зажим детали осуществляется поворотом рукоятки
пневматического крана в положение ''зажать" через систему рычагов
самоустанавливающимся прихватом,
Готовая деталь снимается с приспособления.
Инструмент режущий:
Торцовая фреза ( 160мм ГОСТ
Торцовая фреза ( 250мм ГОСТ
Инструмент измерительный:
Штангенциркуль 11-250-01 ГОСТ 166-80
15 Операция токарная станок МК 112
Приспособление: патрон ПРК320
Инструмент режущий:
Резец 2102-0059 T5K10 ГОСТ 18877-73
Резец УК 2I30-40I5
Измерительный инструмент:
Штангенциркуль 11-250-01 ГОСТ 166-80
Скоба ( 230мм п 14 СТП 1742 163-83
Скоба ( 230мм УК 8II3-4003/2
20 Операция автоматная 1Б284
Приспособление: патрон модели 425П
Режущий инструмент:
1.Резец 10C2573 (20х32х100)
2.Резец 1032100-0226-IOO Т5К10 СТП 21004-74
3.Резец 1032101-0894-65Т5К10 СТП 21013-74
4.Резец 12C-C2573 (16х16х65)
5.Резец 11-С2573 (16х16х75)
6.Резец 2102-0060 ГОСТ 18877-73
7.Резец 10-С2573 (20х32х100)
8.Резец 1032100-0226-100 T5K10 СТП 21004-74
Измерительный инструмент:
Штангенциркуль ШЦ-11-250-0,1 ГОСТ 166-80
Штангенциркуль ШЦ -1-125-0.1 ГОСТ 166-80
Пробка (115мм Н14ПР СТП 0742.172-83
Пробка (115мм Н14НЕ СТП 0742.173-83
Пробка ( 94мм Н14ПР СТП 0742.172-83
Пробка ( 94мм Н14 НЕ СТП 0742.173-83

25 Операция наплавка BKСM- 1000 РБ-301
30 Операция автоматная 1Б284
Приспособление: патрон модели 425П
Режущий инструмент:
1.Резец УК 2102-4010 (16х16х70)
2.Резец УК 2102-4010 0(16х16х70)
3.Резец УК 2102-4011 (16х16х75)
4.Резец УК 2102-4009 (16х16х70)
5.Резец 5С2808 (16х16х70)
6.Резец 13C2573 (16х16х85)
7.3енкер УК 2329 4005-01
Измерительный инструмент:
Штангенциркуль ШЦ-11-250-0.1 ГОСТ 166-80
Пробка ( 140мм Н12ПР СТП 0742-172-83
Пробка ( 140мм Н12НЕ СТП 0742-173-83
Штангенциркуль ШЦ-1-125-01 ГОСТ 166-80
Пробка 0 100мм Н14ПР СТП 0742-172-83
Пробка 0 100мм H14HE СТП 0742-173-83
Шаблон УК 8424-4199
Шаблон УК 8424-4200-01
35 Операция станок 1АМ0443
Приспособление при станке IAM0443-050
Режущий инструмент:
Сверло ( 14мм 2301-3439 ГОСТ 12121-77
Сверло ( 23мм 2301-0079 ГОСТ 10903-77
Метчик М1б 2620-1619Н2 ГОСТ 3266-71
Измерительный инструмент :
Пробка ( 14мм HI2 СТП 0742.169-83
Пробка ( 23мм HI5 СТП 0742.169-3
Пробка 8221-0068 7Н ГОСТ 17756-72
Пробка 822I-1068-7H ГОСТ 17757-72
40 Операция слесарная
Машина шлифовальная ИП2013
Круг шлифовальный ПП 60х25х20 ГОСТ 2424-75
Напильник 2822-0024 ГОСТ 71465-69



2.11 ОПРЕДЕЛЕНИЕ ПРОМЕЖУТОЧНЫХ ПРИПУСКОВ НА ОБРАБОТКУ

Расчет припуска на обработку внутренней поверхности ( 140+0,40
(У= 0,7+1мкм/мм
(загот.= (УxL = 0,7x 350 = 245 мкм
(после черновой обработки = 245 x 0,06 = 14,7мкм
(после чистовой обработки = 14,7 x 0,05 = 0,74мкм
Из-за малой величины ( после чистовой обработки упускаем,
Ку = 0,06
Ку = 0,05
(у = (б + (З
(б = 0
(у1 = 140
(у2 = 140 х 0,06 = 8,4
(после чистовой = 8,4 x 0,05 = 0,42
Допуски:
400 - общий допуск по чертежу
460 - приложение 3
2000 - таблица 3.3
Расчетные припуски
Zimin по чист. = 2 (R·Zi-1 + Ti-1 + [pic](2i-1 + (2у )
Zimin = 2 ( 100 + 100 +[pic]) = 429;
Zimin по черн.= 2 ( 250 + 250 + [pic] =
= 2 ( 500 + [pic]) = 1490;
Расчетный размер после черновой обработки и максимальный предельный
размер
Расчетный номинальный плюс минимальный припуск
140 + 0,429 = 140,429
Расчетный размер после чистовой обработки
Расчетный размер после черновой минус расчетный припуск:
139,57 - 1,49 = 138,08
Минимальный предельный размер
Предельный максимальный размер минус допуск:
после чистовой
140 - 0,4 = 139,6
после черновой
139,57 - 0,46 = 139,11
заготовки
138,08 - 2,0 = 136,08
Максимальный припуск после черновой обработки
Минимальный предельный размер после чистовой обработки минус
предельный размер после черновой:
139,6 - 139,11 = 0,49 мм = 490 мкм
139,11 - 136,08 = 3,030мм = 3030 мкм
Минимальные припуски
Максимальный предельный размер после чистовой обработки минус
максимальный предельный размер после черновой:
140 - 139,57 = 0,43 мм = 430 мкм
139,57 -138,08 = 1,49 мм = 1490 мкм
Проверка:
(1 - (2 = 2000 - 460 = 1540;
Zimin - Zimax = 3030 - 1490 = 1540;
1540 = 1540.
Линейный размер 20-0,84
( и ( теже данные
Zimin после чистовой = R·Zi-1 + Ti-1 + (i-1 + Эу =
=100 + 100 + 14,7 = 214,7
Zimin после черновой = 250 + 250 + 245 + 8,4 = 753,4
Расчетный размер и предельный минимальный размер
после чистовой
20 - 0,84 = 19,16
после черновой
19,6 + 0,21 = 19,37
заготовки
19,37 + 0,75 = 20,12
Предельный максимальный размер Расчетный размер плюс допуск:
19,16 + 0,4 = 19,56 19,37 + 0,46 = 19,83 20,12 + 2,0 = 22,12
Максимальный припуск
Максимальный предельный размер заготовки минус максимальный предельный
размер после черновой обработки:
22,12 - 19,83 = 2,29
Максимальный предельный размер после черновой минус максимальный
предельный размер после чистовой:
19,83 - 19,56 = 0,27
Минимальный припуск
Минимальный предельный размер заготовки минус минимальный предельный
размер после черновой обработки:
20,12 - 19,37 = 0,75
19,37 - 19,16 = 0,21

Проверка:
(1 - (2 = 2000 - 460 = 1540;
Zimin - Zimax = 3030 - 1490 = 1540;
1540 = 1540.


Таблица 2.- расчет припусков, допусков и межоперационных размеров по
технологическим переходам.
Аналитический метод расчета.

|Технологические |Элементы припуска, мкм|Расчетны|Расчетны|Допуски |Предельные размеры |Предельные |
|операции и переходы | |й |й размер| | |припуски |
|обработки отдельных | |припуск | |в мкм | | |
|поверхностей | | | | | | |
| | |Z, мкм | | | | |
| |Rzi-|Ti-1|(i-1|(у | | | |max |min |Zimax |Zimin |
| |1 | | | | | | | | | | |
|Внутренняя поверхность | | | | | | | | | | | |
|( 1400+0,4 | | | | | | | | | | | |
|Заготовка, отливка |250 |250 |245 |200 |- |138,08 |2000 |138,08 |136,08 | | |
|Точение черновое |100 |100 |14,7|12 |1490 |139,57 |460 |139,57 |139,11 |1490 |3030 |
|Чистовое точение |25 |25 |- |- |430 |140 |400 |140 |139,6 |430 |490 |
|Линейный размер 20-0,84| | | | | | | | | | | |
|Заготовка, отливка |250 |250 |245 |140 | |20,12 |2000 |22,12 |20,12 | | |
|Расточка черновая |100 |100 |14,7|8,4 |753,4 |19,37 |360 |19,83 |19,37 |2290 |750 |
|Расточка чистовая |25 |25 |- |- |214,7 |19,16 |840 |19,56 |19,16 |270 |210 |
2.12 РАСЧЕТ РЕЖИМОВ РЕЗАНИЯ ПО НОРМАТИВАМ

10 Операция фрезерная
Определение длины рабочего хода на каждый переход
1. Фрезеровать литейные прибыли [8]
L р.х. = l + l1= 160 + 70 = 230 мм
2. Фрезеровать литейные прибыли
L р.х. = l + l1 = 215 + 130 = 345мм
3. Фрезеровать литейные прибыли
L р.х. = l + l1 = 160 + 70 = 230мм
Глубина резания
t1 = Змм
t2 = Змм
t3 = Змм
Назначаем подачи для каждого перехода [8] .
S1 = 0,24
S2 = 0,24
S3 = 0,24
В качестве расчетной величины берем на каждый переход S минутное по
справочнику [8]
SM1 = 160 мм/мин
SM2 = 160 мм/мин
SM3 = 160 мм/мин
Назначаем скорости [8]
V1 = 80 м/мин
V2 = 125 м/мин
V3 = 80 м/мин
Находим частоту вращения каждого шпинделя
n1 = 1000 * V / ( D = 1000*80 / 3,14*160 = 160 об/мин
n2 = 1000 * V / ( D = 1000*125 / 3,14*215 = 160 об/мин
n3 = 1000 * V / ( D = 1000*80 / 3,14*160 = 160 об/мин
Мощность резания [8]
N1резания = 5,6
N2резания = 6,4
N3резания = 5,6
Коэффициент .использования мощности станка
KN =Nрас / Nст = 17,6 : 22,5 = 0,78
Nрас = Nрез / ( = 17,6 : 0,8 = 22

15 Операция токарная МК 112
Определение длины рабочего хода [4]
1. L р.х. = 162 - 100 / 2 =31 мм
l1 = 6 мм ; L р.х. = 31мм + 6мм = 37 мм
2. L р.х. = 22мм + 6мм = 28 мм
3. L р.х. = 31мм + 6мм = 37 мм
4. L р.х. = 22мм + 6мм = 28 мм

Глубина резания
t1 = 5мм
t2 = 5мм
t3 = 5мм
t4 = 5мм
Назначаем подачи для каждого перехода
S1 = 0,23
S2 = 0,23
S3 = 0,23
S4 = 0,23
Назначаем скорость [8]
V = 148
Скорость резания назначаем с поправочными коэффициентами
Кnv - поправочный коэффициент на состояние обрабатываемой поверхности
Кnv - поправочный коэффициент на материал режущего инструмента
Кnv = 0,5
Кnv = 0,6
V = 148 х 0,5 х 0,6 = 44 м/мин
Находим частоту вращения шпинделя
n = 1000*V / ( D = 86 об/мин
корректируем по паспорту: n = 90 об/мин

Назначаем скорость по лимитирующей длине обработки
V = ( D n / 1000 = 3,14*160*90 / 1000 = 45 м/мин.
Определение мощности для резца [8]
резец N1 - табл. = 1,0 квт.
при t =5 мм S = 0,3 мм/об
резец N2 - табл. = 1,0 квт.
при t =5 мм S = 0,3 мм/об
резец N3 - табл. = 1,0 квт.
при t =5 мм S = 0,3 мм/об
резец N4 - табл. = 1,0 квт.
при t =5 мм S = 0,3 мм/об
Суммарная мощность
Nрез = N1 + N2 + N3 + N4 = 4 квт
Определение достаточности мощности станка
( Nрез ( Nшn , Nшn = Nст · (,
где: ( = 0,8 ; Nст =7,5квт
Nшn = 7,5 квт •0,8 = 6 квт. < 7,5 квт
4 квт. < 6 квт.
Коэффициент использования мощности станка
К N = Nрас / Nст = 5 : 7,5 = 0,65
Nрас = Nрез / ( = 4 : 0,8 = 5
20 Операция автоматная 1Б 284
Определение длины рабочего хода
Подрезать торец
L р.х = 215 - 105 / 2 = 55мм
l1 = 5мм
L р.х = 55 + 5 = 60мм
1. Точить ( 125
L р.х = 10 + 2 = 12мм
2. Точить поверхность ( 94
L р.х = 25мм
3. Точить поверхность ( 125
L р.х = 25мм
4. Снять фазку
L р.х = 5мм
5. Обточить поверхность ( 215
L р.х = 55мм
Глубина резания
1. t = 3мм
2. t = 4мм
3. t = 6мм
4. t = 2мм
5. t = 2мм

Назначаем подачи для каждого перехода [8]
S1 = 0,28 мм/об
S2 = 0,2 мм/об
S3 = 0,2 мм/об
S4 = 0,2 мм/об
S5 = 0,28 мм/об
Назначаем скорость [8]
V = 148 мм/мин
Скорость резания назначаем с поправочными коэффициентами
Кnv - поправочный коэффициент на состояние обрабатываемой поверхности,
Кnv = 0,5;
Кnv - поправочный коэффициент на материал режущего инструмента,
Кnv = 0,6.
V = 148 х 0,5 х 0,6 = 44 м/мин
Находим частоту вращения шпинделя
n1 = 1000 * V / ( D = 1000*44 / 3,14*215 = 65,8 об/мин
Корректируем по паспорту 63 об/мин
1. Vфакт = ( D n / 1000 = 3,14*215*63 / 1000 = 42,5 м/мин.
2. V2 = ( D n / 1000 = 3,14*115*63 / 1000 = 22,7 м/мин.
3. V3 = ( D n / 1000 = 3,14*124*63 / 1000 = 24,5 м/мин.
4. V4 = ( D n / 1000 = 3,14*124*63 / 1000 = 24,5 м/мин.
5. V5 = ( D n / 1000 = 3,14*215*63 / 1000 = 42,5 м/мин.
Определение суммарной мощности резания [8]
резец N1 - табл. = 2,0 квт.
при t =3 мм S = 0,28 мм/об
резец N2 - табл. = 2,0 квт.
при t =4 мм S = 0,2 мм/об
резец N3 - табл. = 2,0 квт.
при t =6 мм S = 0,2 мм/об
резец N4 - табл. = 2,0 квт.
при t =2 мм S = 0,2 мм/об
резец N5 - табл. = 2,0 квт.
при t =2 мм S = 0,28 мм/об
Определение мощности для резца [8]
( Nрез ( Nшn , Nшn = Nст · (,
где: ( = 0,8 ; Nст =30квт
Nшn = 30 квт •0,8 = 24 квт. < 30 квт
10 квт. < 24 квт.
Коэффициент использования мощности станка
К N = Nрас / Nст = 12,5 : 30 = 0,41
Nрас = Nрез / ( = 10 : 0,8 = 12,5

30 Операция автоматная 1Б284
Определяем длины рабочего хода на каждый переход [8] c4
1. l = 22мм
l1 = 6мм
L р.х = 22 + 6 = 28мм
2. L р.х = 4мм
3. L р.х = 14мм
4. L р.х = 25мм
5. L р.х = 25мм
Глубина резания
1. t = 3мм
2. t = 4мм
3. t = 10мм
4. t = 3мм
5. t = 2мм
Назначаем подачи для каждого перехода [8]
S1 = 0,2 мм/об
S2 = 0,1 мм/об
S3 = 0,1 мм/об
S4 = 0,2 мм/об
S5 = 0,14 мм/об
Назначаем скорость [8]
V = 148 мм/мин
Скорость резания назначаем с поправочными коэффициентами
Кnv - поправочный коэффициент на состояние обрабатываемой поверхности
Кuv - поправочный коэффициент на материал режущего инструмента,
К0v - поправочный коэффициент на обрабатываемый материал
Кnv = 0,5
Кuv = 0,6
К0v = 0,8
V = 148 х 0,5 х 0,6 x 0,8 = 35,52 м/мин
Режимы резания назначаем по лимитирующему переходу
Sлим - S6
lлим - l6
n = 1000 * V / ( D = 1000*35 / 3,14*100 = 113,1 об/мин
Корректируем по паспорту п = 90 об/мин
V1факт = ( D n / 1000 = 3,14*124*90 / 1000 = 31,1 м/мин.
V2 = ( D n / 1000 = 3,14*113*80 / 1000 = 28,4 м/мин.
V3 = ( D n / 1000 = 3,14*120*80 / 1000 = 30,1 м/мин.
V4 = ( D n / 1000 = 3,14*100*80 / 1000 = 25,12 м/мин.
V5 = ( D n / 1000 = 3,14*215*63 / 1000 = 30,1 м/мин.

Определение суммарной мощности по всем инструментам [8]
N1 = 2,0 квт.
при t = 3 мм S = 0,2 мм/об
N2 = 2,0 квт.
при t = 4 мм S = 0,1 мм/об
N3 = 2,0 квт.
при t = 10 мм S = 0,1 мм/об
N4 = 2,0 квт.
при t =3 мм S = 0,2 мм/об
резец N5 = 2,0 квт.
при t =2 мм S = 0,28 мм/об
Суммарная мощность
Nрез = N1 + N2 + N3 + N4 = 4 квт
Определение достаточности мощности станка
( Nрез ( Nшn , Nшn = Nст · (,
где: ( = 0,8 ; Nст =7,5квт
Nшn = 7,5 квт •0,8 = 6 квт. < 7,5 квт
4 квт. < 6 квт.
Коэффициент использования мощности станка
К N = Nрас / Nст = 5 : 7,5 = 0,65
Nрас = Nрез / ( = 4 : 0,8 = 5

35 Операция агрегатная
Определение длины рабочего хода на каждый переход I. /рх. =^ ^-^
L р.х = l + l1 = 28мм
l = 20 мм
l1 = 6мм
L р.х = 20мм + 6мм = 26мм
2. L р.х = 31мм
3. L р.х = 2мм
4. L р.х = 31мм
5. L р.х = 26мм
Глубина резания
1. t = 7 мм
2. t = 11,5 мм
3. t = 9 мм
4. t = 11,5 мм
5. t = 2 мм

Назначаем подачи для каждого перехода [8]
S1 = 0,14 мм/об
S2 = 0,23 мм/об
S3 = 0,25 мм/об
S4 = 0,23 мм/об
S5 = 0,2 мм/об
Назначаем скорости
V1 = 24 м/мин
V2 = 32 м/мин
V3 = 32 м/мин
V4 = 32 м/мин
V5 = 6 м/мин
Скорость резания берем с поправочным коэффициентом
Кnv - поправочный коэффициент на состояние обрабатываемой поверхности
Кnv = 0,6
24*0,6 = 14,4м/мин

n1 = 1000 * V / ( D = 1000*14,4 / 3,14*14 = 327,6 об/мин
корректируем по паспорту 275 об/мин
V1 = ( D n / 1000 = 3,14*14*275 / 1000 = 12 м/мин

n2 = 1000 * V / ( D = 1000*14,4 / 3,14*23 = 194 об/мин
корректируем по паспорту 180 об/мин
V2 = ( D n / 1000 = 3,14*23*180 / 1000 = 12,1 м/мин
для зенковки

n3 = 1000 * V / ( D = 1000*14,4 / 3,14*18 = 254,8 об/мин
корректируем по паспорту 200 об/мин
V3 = ( D n / 1000 = 3,14*14*200 / 1000 = 11,3 м/мин

n4 = 1000 * V / ( D = 1000*14,4 / 3,14*23 = 194 об/мин
корректируем по паспорту 180 об/мин
V4 = ( D n / 1000 = 3,14*23*180 / 1000 = 12,1 м/мин

n5 = 1000*6 / 3,14*16 = 120 об/мин

Определение суммарной мощности резания по всем инструментам [8]
Сверло N1 = 0,28 квт.
при t = 7 мм S = 0,23
Сверло N2 = 0,28 квт.
при t = 7 мм S = 0,23
Сверло N3 = 0,28 квт.
при t = 7 мм S = 0,23
Сверло N4 = 0,28 квт.
при t = 7 мм S = 0,23
Сверло N5 = 0,28 квт.
при t = 7 мм S = 0,23
Сверло N6 = 0,28 квт.
при t = 7 мм S = 0,23
Сверло N7 = 0,28 квт.
при t = 7 мм S = 0,23
Сверло N8 = 0,28 квт.
при t = 7 мм S = 0,23

Суммарная мощность
Nрез = N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 = 2,24 квт
Определение достаточности мощности станка
( Nрез ( Nшn , Nшn = Nст · (,
где ( = 0,8 ; Nст =5,5квт
Nшn = 5,5 квт • 0,8 = 4,4 квт. < 5,5 квт
4,4 квт. < 5,5 квт.
Коэффициент использования мощности станка
Nрас = Nрез / ( = 2,24 : 0,8 = 2,8
N = Nрас / Nст = 2,8 : 5,5 = 0,5
Определение суммарной мощности по всем инструментам
Сверло N1 = 0,378 квт.
при t = 11,5 мм S = 0,23
Сверл 16 шт.
Суммарная мощность
(Nрез = N1 + N2 + N3 + … + N16 = 6,048 квт
Определение достаточности мощности станка
( Nрез ( Nшn , Nшn = Nст · (,
где ( = 0,8 ; Nст = 17квт
Nшn = 17 квт • 0,8 = 13,6 квт. < 17 квт
6,048 квт. < 13,6 квт
Nрас = Nрез / ( = 6,048 : 0,8 = 7,56
N = Nрас / Nст = 7,56 : 17 = 0,44

5 Частота вращения шпинделя станка
n = 1000 * V / ( D = 1000*14,4 / 3,14*23 = 194 об/мин
Корректируем по паспорту 180 об/мин.
10 Операция фрезерная ГФ 1400
материал - сталь 25Л II - ГОСТ 977-75
Выбираем режущий инструмент - торцовая фреза ( 250мм с пятигранными
сменными пластинками из твердого сплава.
Назначаем режимы резания :
1. Глубина резания t = 3 мм.
2. Назначаем подачу S = 0,24 м на 1 зуб.
3. Назначаем период стойкости инструмента таблица 38 [13] Т = 180
мин
4. Определяем скорость резания в м/мин допускаемыми режущими
свойствами фрезы
V = (CV*Dq / Tm * tx * Szyv * Buv * Zpv ) * Knv =
= (332*2500,2 / 1800,2 * 30,5 * 0,240,4 * 2300,2 * 120 ) * 0,8 = 96,3
n = 1000 * V / ( D = 1000*148,8 / 3,14*250 = 122,7 об/мин
Корректируем по паспорту 160 об/мин.

2.13 АНАЛИТИЧЕСКИЙ РАСЧЕТ РЕЖИМОВ РЕЗАНИЯ НА ДВЕ РАЗНОРОДНЫЕ ОПЕРАЦИИ
35 Операция агрегатная станок 1АМО 443
материал - сталь 25Л II - ГОСТ 977-75
Выбираем режущий инструмент сверло Р18 - 23мм.
Назначаем режимы резания:
1. Глубина резания t = 11,5 мм
2. Назначаем подачу S = 0,23
3. Назначаем период стойкости таблица 92 Т = 50мин
4. Определяем скорость резания в м/мин допускаемыми режущими свойствами
сверла
V = (CV*Dq / Tm * Sy) * Kv
CV - постоянная для данных условий резания;
D - диаметр сверла, мм;
Т - период стойкости, мин;
К - поправочный коэффициент на скорость резания.
x, q, m, y - показатели степени
Для заданных условий обработки находим табл. 28 [13]
CV = 7 ; q = 0,40 ; m = 0,20 ;
y = 0,50 ; Kv = 0,584
V = (7 * 3,62 / 2,19 * 0,479) * 0,584 = 14 м/мин

2.15. РАСЧЁТ НОРМ ВРЕМЕНИ НА ВСЕ ОПЕРАЦИИ. УСТАНОВЛЕНИЕ РАЗРЯДОВ
10. Операция фрезерная
Установить заготовку, закрепить. Снять.
ТВ = 1,8 [9]
Определение машинного времени
Т1 = Lpx / Sмин = 230 / 160 = 1,43 (мин);
Т2 = 345 / 160 = 2,15 (мин);
Т3 = 230 / 160 = 1,43 (мин);
Т2 = 2,15 (мин) - лимитирующее;

Тшт = (Т0 + ТВК) * (1 + (аобс + аотл) / 100)
где: К - универсальное оборудование и полуавтоматы (1.1)
аобс.- время, на обслуживание рабочего места
аобс. = 4% от оперативного времени
аотл. - время на отдых, и личные надобности
аотл. = 4% от оперативного времени [9]
Тшт = (2,15 +1,8*1,1) + ( I + (4+4)/100 ) = 4,56 мин.
Тшк = Тшт * 0,8 = 4,56 * 0,8 = 0,36 мин.
Тшк = Тшт + Тпз = 4,56 + 0,36 = 4,92 мин
Назначаем IV разряд работ.
15 Операция токарная
Установить заготовку, закрепить. Снять.
ТВ = 1,8 [9]
Определение машинного времени
Т1 = Lpx / Sмин = 67 / 20,7 = 1,78 (мин);
Т2 = 28 / 20,7 = 1,35 (мин);
Т3 = 37 / 20,7 = 1,78 (мин);
Т4 = 28 / 20,7 = 1,35 (мин);
Т2 = 1,35 (мин) - лимитирующее;
Тшт = (Т0 + ТВК) * (1 + (аобс + аотл) / 100)
где: К = 1,1 -универсальное оборудование и полуавтоматы
аобс.- время, на обслуживание рабочего места
аобс. = 6,5% от оперативного времени
аотл. - время на отдых, и личные надобности
аотл. = 4% от оперативного времени
Тшт = 3,79 мин.
Тшк = 0,3 мин.
Тшк = 4,09 мин
Назначаем IV разряд работ.
20 Операция автоматная 1Б284
Установить заготовку, закрепить. Снять. [9]
ТВ = 1,2 [9]
Определение машинного времени
Т1 = Lpx / Sмин = 67 / 17,64 = 3,4 (мин);
Т2 = 25 / 12,6 = 1,98 (мин);
Т3 = 25 / 12,6 = 1,98 (мин);
Т4 = 5 / 12,6 = 0,39 (мин);
Т5 = 55 / 14,49 = 3,11 (мин);
Т1 = 3,4 (мин) - лимитирующее;
Тшт = (Т0 + ТВК) * (1 + (аобс + аотл) / 100)
где: К = 1,1 -универсальное оборудование и полуавтоматы
аобс.- время, на обслуживание рабочего места
аобс. = 6,5% от оперативного времени
аотл. - время на отдых, и личные надобности
аотл. = 4% от оперативного времени
Тшт = 5,21 мин.
Тшк = 0,41 мин.
Тшк = 5,62 мин
Назначаем IV разряд работ.

30 Операция автоматная 1Б284
Установить заготовку, закрепить. Снять. [9]
ТВ = 1,2 [9]
Определение машинного времени
Т1 = Lpx / Sмин = 28 / 16 = 1,75 (мин);
Т2 = 4 / 8 = 0,5 (мин);
Т3 = 10 / 8 = 1,25 (мин);
Т4 = 25 / 16 = 1,56 (мин);
Т5 = 35 / 11,2 = 3,12 (мин);
Т5 = 3,12 (мин) - лимитирующее;
Тшт = (Т0 + ТВК) * (1 + (аобс + аотл) / 100)
где: К = 1,1 -универсальное оборудование и полуавтоматы
аобс.- время, на обслуживание рабочего места
аобс. = 6,5% от оперативного времени
аотл. - время на отдых, и личные надобности
аотл. = 4% от оперативного времени
Тшт = 4,9 мин.
Тшк = 0,39 мин.
Тшк = 5,29 мин
Назначаем IV разряд работ.
35 Операция агрегатная 1.АМО 443
Установить заготовку, закрепить. Снять. [9]
ТВ = 1,8 [9]
Определение машинного времени
Т1 = Lpx / Sмин = 26 / 38,5 = 0,67 (мин);
Т2 = 60 / 41,4 = 1,45 (мин);
Т3 = 2 / 62,5 = 0,03 (мин);
Т4 = 31 / 41,4 = 0,75 (мин);
Т5 = 26 / 240 = 0,11 (мин);
Т5 = 1,45 (мин) - лимитирующее;
Тшт = (Т0 + ТВК) * (1 + (аобс + аотл) / 100)
где: К = 1,1 -универсальное оборудование и полуавтоматы
аобс.- время, на обслуживание рабочего места
аобс. = 6,5% от оперативного времени
аотл. - время на отдых, и личные надобности
аотл. = 4% от оперативного времени
Тшт = 3,79 мин.
Тшк = 0,39мин.
Тшк = 4,09 мин
Назначаем IV разряд работ.
40 Операция слесарная
Установить деталь. Снять. [9]
Тв =0,52 Тшк = 3,48 (мин)
Т0 = 2,96
Назначаем IV разряд работ.

2.16 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ВЫБРАННОГО ВАРИАНТА ОБРАБОТКИ
В дипломном проекте на токарной операции деталь обрабатывается на
станке 1Б284, в заводском варианте - на 4-х станках 1512.
[15]
Сравниваем показатели: 1512 1Б284
Стоимость станка в руб.; 370000тенге(4шт) 23086
Мощность эл.двигателя, квт; 880.квт (4шт) 30
Штучное время, час; 0,86 0,993
Машинное время, час; 0,67 0,081
Стоимость минуты
эксплуатации инструментам. 0,111 0,42



3 КОНСТРУКТОРСКАЯ ЧАСТЬ

3.1.ПРОЕКТИРОВАНИЕ СПЕЦИАЛЬНОГО РЕЖУЩЕГО ИНСТРУМЕНТА

Основными конструктивными элементами метчика являются режущая л
калибрующая части, число; профиль и направление канавок, углы резания,
утонение калибрующей части, элементы резьбы, комплектность [11,12]
В соответствии с ГОСТ определяем номинальные размеры резь

Новинки рефератов ::

Реферат: Н. М. Карамзин (История)


Реферат: Статья 213 УК РФ в редакции ФЗ от 08.12.2003 (Уголовное право и процесс)


Реферат: Концепции современного естествознания (Естествознание)


Реферат: Основания постановки граждан на учёт нуждающихся в улучшении жилищных условий (Право)


Реферат: Индивидуальные особенности памяти и их связь со способностями (Психология)


Реферат: Влияние аэробики на организм (Спорт)


Реферат: Механизмы защитных реакций (Психология)


Реферат: Виды и роль эмоций в жизни человека (Психология)


Реферат: А.К. Гастев и альтернативная педагогика 20-х гг. XX века (Педагогика)


Реферат: Социальные трансферты (Социология)


Реферат: Влияние семьи на становление личности (Психология)


Реферат: Соучастие (Уголовное право и процесс)


Реферат: Василь Быков. "Человек на войне" (Литература : русская)


Реферат: Диалектика сознательного и бессознательного (Психология)


Реферат: Особенности сельскохозяйственной проблематики в современный период. Структура, типология аграрной прессы; формы и методы пропаганды (Сельское хозяйство)


Реферат: Кооперативные организации Германии и России (Предпринимательство)


Реферат: Деловая стратегия (Менеджмент)


Реферат: Сальвадор Дали в театре "ДИКЛОН" (Искусство и культура)


Реферат: Билеты АФХД (Бухгалтерский учет)


Реферат: Петерим Сорокин. Взгляд на будущее (Социология)



Copyright © GeoRUS, Геологические сайты альтруист