GeoSELECT.ru



Астрономия / Реферат: Юпитер (Астрономия)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Юпитер (Астрономия)



Особенности Юпитера.
Из четырех гигантских планет лучше всего изучен Юпитер — самая большая
планета этой группы и ближайшая из планет-гигантов к нам и Солнцу. Ось
вращения Юпитера почти перпендикулярна к плоскости его орбиты, поэтому
сезонных изменений условия освещения на нем нет.
У всех планет-гигантов вращение вокруг оси довольно быстрое, а плотность
мала. Вследствие этого они значительно сжаты.
Все планеты-гиганты окружены мощными протяженными атмосферами, и мы видим
лишь плавающие в них облака, вытянутые полосами, параллельными экватору,
вследствие их быстрого вращения.
Полосы облаков видны на Юпитере даже в слабый, телескоп Юпитер вращается
зонами—чем ближе к полюсам, тем медленнее. На экваторе период вращения 9 ч
50 мин, а на средних широтах на несколько минут больше. Аналогичным образом
вращаются и другие планеты-гиганты.
Поскольку планеты-гиганты находятся далеко от Солнца, их температура (по
крайней мере над их облаками) очень низка:
на Юпитере —145°С, на Сатурне —180°С, на Уране и Нептуне еще ниже.
Атмосферы планет-гигантов содержат в основном молекулярный водород, есть
там метан СН4 и, по-видимому, много гелия, а в атмосфере Юпитера и Сатурна
обнаружен еще и аммиак NНз. Отсутствие полос NH3 в спектрах более далеких
планет объясняется тем, что он там вымерз. При низкой температуре аммиак
конденсируется, и из него, вероятно, состоят видимые облака Юпитера.
Интенсивные движения, охватывающие облачный и соседние с ним слои
атмосферы, имеют устойчивый характер. В частности, таким устойчивым
атмосферным «вихрем» является знаменитое Красное пятно, наблюдаемое на
Юпитере уже свыше 300 лет.
Изучение процессов, происходящих в атмосферах различных планет, помогает
земной метеорологии и климатологии.
Теоретически построены модели массивных планет, состоящих из водорода и
гелия. Расчеты модели внутреннего строения Юпитера показывают, что по мере
приближения к центру водород должен последовательно проходить через
газообразную, газо-жидкую и жидкую фазы. В центре планеты, где температура
может достигать нескольких тысяч кельвин, находится жидкое ядро, состоящее
из металлов, силикатов и водорода в металлической фазе, которая наступает
при давлениях порядка 10" Па. В 1975 г. металлическую фазу водорода удалось
экспериментально получить на Земле, что подтверждает справедливость
теоретических расчетов внутреннего строения планет-гигантов.
Благодаря наличию магнитного поля Юпитер имеет пояса радиации, подобные
земным, но значительно превосходящие их. Его магнитосфера простирается на
миллионы километров, охватывая четыре крупнейших спутника. Юпитер является
источником радиоизлучения. Космические аппараты зарегистрировали на нем
мощные вспышки молний.
Из остальных данных о планетах заслуживает упоминания особенность осевого
вращения Урана, которое, как и у Венеры, происходит в направлении,
противоположном направлению вращения всех остальных планет. Кроме того, он
вращается как бы лежа на боку, поэтому в течение года происходит
значительное изменение условий освещения поверхности планеты.
Самая далекая планета — Плутон — не является планетой-гигантом. Это очень
небольшая и плохо изученная холодная планета, год на которой длится около
250 земных лет.



Полеты космических кораблей “Аполлон”

|№ корабля |Экипаж |Даты полета |
|1 |Беспилотный |26.02.66 |
|2 |Беспилотный |05.07.66 |
|3 |Беспилотный |23.08.66 |
|4 |Беспилотный |09.11.67 |
|5 |Беспилотный |22.01 - 11.02.68 |
|6 |Беспилотный |04.04.68 |
|7 |У. Ширра, Д. Эйзел, У. |11 - 22.10.68 |
|8 |Каннингем |21 - 27.12.68 |
|9 |Ф. Борман, Дж. Ловелл, |03 - 13.03.69 |
|10 |У. Андерс |18 - 26.05.69 |
|11 |Дж. Макдивитт, Д. |16 - 24.07.69 |
|12 |Скотт, Р. Швейкарт |14 - 24.11.69 |
|13 |Т. Стаффорд, Дж. Янг, |11 - 17.04.70 |
|14 |Ю. Сернан |31.01 - 09.02.71 |
|15 |Н. Армстронг, М. |26.07 - 07.08.71 |
|16 |Коллинз, Э. Олдрин |16 - 27.04.72 |
|17 |Ч. Конрад, Р. Гордон, |07 - 19.12.72 |
| |А. Бин | |
| |Дж. Ловелл, Дж. | |
| |Суиджерт, Ф. Хейс | |
| |А. Шепард, Э. Митчелл, | |
| |С. Руса | |
| |Д. Скотт, Дж. Ирвин, А.| |
| |Уорден | |
| |Дж. Янг, Ч. Дьюк, Т. | |
| |Маттингли | |
| |Ю. Сернан, Р. Эванс, | |
| |Х. Шмитт | |



“Происхождение Солнечной системы“
Вот уже два века проблема происхождения Солнечной системы волнует
выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от
философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX
столетий.
И все же мы до сих пор довольно далеки от решения этой проблемы. Но за
последние три десятилетия прояснился вопрос о путях эволюции звезд. И хотя
детали рождения звезды из газово-пылевой туманности еще далеко не ясны, мы
теперь четко представляем, что с ней происходит на протяжении миллиардов
лет дальнейшей эволюции.
Переходя к изложению различных космогонических гипотез, сменявших одна
другую на протяжении двух последних столетий, начнем с гипотезы великого
немецкого философа Канта и теории, которую спустя несколько десятилетий
независимо предложил французский математик Лаплас. Предпосылки к созданию
этих теорий выдержали испытание временем.
Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант
исходил из эволюционного развития холодной пылевой туманности, в ходе
которого сперва возникло центральное массивное тело - будущее Солнце, а
потом планеты, в то время как Лаплас считал первоначальную туманность
газовой и очень горячей с высокой скоростью вращения. Сжимаясь под
действием силы всемирного тяготения, туманность, вследствие закона
сохранения момента количества движения, вращалась все быстрее и быстрее. Из-
за больших центробежных сил от него последовательно отделялись кольца.
Потом они конденсировались, образуя планеты.
Таким образом, согласно гипотезе Лапласа, планеты образовались раньше
Солнца. Однако, несмотря на различия, общей важной особенностью является
представление, что Солнечная система возникла в результате закономерного
развития туманности. Поэтому и принято называть эту концепцию “гипотезой
Канта-Лапласа”.
Однако эта теория сталкивается с трудностью. Наша Солнечная система,
состоящая из девяти планет разных размеров и масс, обладает особенностью:
необычное распределение момента количества движения между центральным телом
- Солнцем и планетами.
Момент количества движения есть одна из важнейших характеристик всякой
изолированной от внешнего мира механической системы. Именно как такую
систему можно рассмотреть Солнце и окружающие его планеты. Момент
количества движения можно определить как “запас вращения” системы. Это
вращение складывается из орбитального движения планет и вращения вокруг
осей Солнца и планет.
Львиная доля момента количества движения Солнечной системы сосредоточена в
орбитальном движении планет-гигантов Юпитера и Сатурна.
С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда
от первоначальной, быстро вращающейся туманности отделилось кольцо, слои
туманности, из которых потом сконденсировалось Солнце, имели (на единицу
массы) примерно такой же момент, как вещество отделившегося кольца (так как
угловые скорости кольца и оставшихся частей были примерно одинаковы), так
как масса последнего была значительно меньше основной туманности
(“протосолнца”), то полный момент количества движения кольца должен быть
много меньше, чем у “протосолнца”. В гипотезе Лапласа отсутствует какой-
либо механизм передачи момента от “протосолнца” к кольцу. Поэтому в течение
всей дальнейшей эволюции момент количества движения “протосолнца”, а затем
и Солнца должен быть много больше, чем у колец и образовавшихся из них
планет. Но этот вывод противоречит с фактическим распределением количества
движения между Солнцем и планетами.
Для гипотезы Лапласа эта трудность оказалась непреодолимой.
Остановимся на гипотезе Джинса, получившей распространение в первой трети
текущего столетия. Она полностью противоположна гипотезе Канта-Лапласа.
Если последняя рисует образование планетарных систем как единственный
закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса
образование таких систем есть дело случая.
Исходная материя, из которой потом образовались планеты, была выброшена из
Солнца (которое к тому времени было уже достаточно “старым” и похожим на
нынешнее) при случайном прохождении вблизи него некоторой звезды. Это
прохождение был настолько близким, что его можно рассматривать практически
как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце
звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя
останется в сфере притяжения Солнца и после того, как звезда уйдет от
Солнца. Потом струя сконденсируется и даст начало планетам.
Если бы гипотеза Джинса была правильной, число планетарных систем,
образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать
по пальцам. Но планетарных систем фактически много, следовательно, эта
гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца
струя горячего газа может сконденсироваться в планеты. Таким образом,
космологическая гипотеза Джинса оказалась несостоятельной.
Выдающийся советский ученый О.Ю.Шмидт в 1944 году предложил свою теорию
происхождения Солнечной системы: наша планета образовалась из вещества,
захваченного из газово-пылевой туманности, через которую некогда проходило
Солнце, уже тогда имевшее почти “современный” вид. При этом никаких
трудностей с вращением момента планет не возникало, так как первоначально
момент вещества облака может быть сколь угодно большим. Начиная с 1961 года
эту гипотезу развивал английский космогонист Литтлтон, который внес в нее
существенные улучшения. По обеим гипотезам “почти современное” Солнце
сталкивается с более или менее “рыхлым” космическим объектом, захватывая
части его вещества. Тем самым образование планет связывается с процессом
звездообразования.





Реферат на тему: звезды

3везды бывают новорожденными, молодыми, среднего возраста и старыми.
Новые звезды постоянно образуются, а старые постоянно умирают.
Самые молодые, которые называются звездами типа Т Тельца (по одной из
звезд в созвездии Тельца), похожи на Солнце, но гораздо моложе его.
Фактически они все еще находятся в процессе формирования и являются
примерами протозвезд (первичных звезд).
Это переменные звезды, их светимость меняется, поскольку они еще не
вышли на стационарный режим существования. Вокруг многих звезд типа Т
Тельца имеются вращающиеся диски вещества; от таких звезд исходят мощные
ветры>. Энергия вещества, которое падает на протозвезду под действием силы
тяготения, превращается в тепло. В результате температура внутри
протозвезды все время повышается. Когда центральная ее часть становится
настолько горячей, что начинается ядерный синтез, протозвезда превращается
в нормальную звезду. Как только начинаются ядерные реакции, 'у звезды
появляется источник энергии, способный поддерживать ее существование в
течение очень долгого времени. Насколько долгого - это зависит от размера
звезды в начале этого процесса, но у звезды размером с наше Солнце топлива
хватит па стабильное существование в течение примерно 10 миллиардов лет.
Однако случается, что звезды, гораздо более массивные, чем Солнце,
существуют всего несколько миллионов лет; причина в том, что они сжимают
свое ядерное топливо с гораздо большей скоростью.

Нормальные звезды

Все звезды в основе своей похожи на наше Солнце: это огромные шары
очень горячего светящегося газа, в самой глубине которых вырабатывается
ядерная энергия. Но не все звезды в точности такие, как Солнце. Самое явное
различие - это цвет. Есть звезды красноватые или голубоватые, а не желтые.
Кроме того, звезды различаются и по яркости, и по блеску. Насколько
яркой выглядит звезда в небе, зависит не только от ее истинной светимости,
но также и от расстояния, отделяющего ее от нас. С учетом расстояний,
яркость звезд меняется в широком диапазоне: от одной десятитысячной яркости
Солнца до яркости более чем Е миллиона Солнц. Подавляющее большинство
звезд, как оказалось, располагается ближе к тусклому краю этой шкалы.
Солнце, которое во многих отношениях является типичной звездой, обладает
гораздо большей светимостью, чем большинство других звезд. Невооруженным
глазом можно увидеть очень небольшое количество слабых по своей природе
звезд. В созвездиях нашего неба главное внимание привлекают к себе
“сигнальные огни” необычных звезд, тех, что обладают очень большой
светимостью.
Почему же звезды так сильно различаются по своей яркости ?
Оказывается, тут нге ~явисит от массы звезды.
Количество вещества, содержащееся в конкретной звезде, определяет ее
цвет и блеск, а также то, как блеск меняется во времени. Минимальная
величина массы, необходимая, чтобы звезда была звездой, составляет около
одной две Вставить из листика
Гиганты и карлики
Самые массивные звезды одновременно и самые горячие, и самые яркие.
Выглядят они белыми или голубоватыми. Несмотря на свои огромные размеры,
эти звезды производят такое колоссальное количество энергии, что все их
запасы ядерного топлива перегорают за какие-нибудь несколько миллионов лет.
В противоположность им эвезды, обладающие небольшой массой, всегда
неярки, а цвет их - красноватый. Они могут существовать в течение долгих
миллиардов лет.
Однако среди очень ярких звезд в нашем небе есть красные и оранжевые.
К ним относятся и Альдебаран - глаз быка в созвездии Телец, и Антарес в
Скорпионе. Как же могут эти холодные эвезды со слабо светящимися
поверхностями соперничать с раскаленными добела звездами типа Сириуса и
Веги?
Ответ состоит в том, что эти эвезды очень сильно расширились и теперь
по размеру намного превосходят нормальные красные звезды. По этой причине
их называют гигантами, или даже сверхгигантами.
Благодаря огромной площади поверхности, гиганты излучают неизмеримо
больше энергии, чем нормальные звезды вроде Солнца, несмотря на то что
температура их поверхности значительно ниже. Диаметр красного сверхгиганта
- например, Бетельгейзе в Орионе - в несколько сот раз превосходит диаметр
Солнца. Напротив, размер нормальной красной звезды, как правило, не
превосходит одной десятой размера
Солнца. По контрасту с гигантами их называют “карликами”. Гигантами и
карликами звезды бывают на разцых стадиях своей жизни, и гигант может в
конце концов превратиться в карлика, достигнув “пожилого возраста”.

Жизненный цикл звезды


Обычиая звсзда, такая, как Солнце, вы деляст знергию за счет
превращения во лорола н гелий в ядерной печи, нахо дягцейся и самой ее
сердцевине. Солн пе с

Новинки рефератов ::

Реферат: Оборудование летательных аппаратов ( Космонавтика)


Реферат: Багаторезонаторний магнетрон безперервної дії з коаксіальним виводом енергії (Радиоэлектроника)


Реферат: Пифагор (Культурология)


Реферат: Тристан и Изольда (Литература : зарубежная)


Реферат: Гормолокозавод (Предпринимательство)


Реферат: Принципы права (Государство и право)


Реферат: Аристотель - основатель науки Логики (Философия)


Реферат: "Государство" Платона Том 3, гл. 8 (Философия)


Реферат: Афганистан в конце XX в (История)


Реферат: Кто делает историю: отдельные личности или народ? (Культурология)


Реферат: Организация и оплата труда в условиях рынка (Банковское дело)


Реферат: Общества с ограниченной ответственностью (Право)


Реферат: Влияние исторических событий на советское искусство (История)


Реферат: Київська Русь (История)


Реферат: Внешняя политика Николая I (История)


Реферат: Экзаменационные билеты по теории организации за второй семестр 2000 г (Теория организации)


Реферат: Геополитические интересы России и Западной Европы в 90-е годы (Геополитика)


Реферат: КПРФ (История)


Реферат: Современная финансовая политика Японии (Финансы)


Реферат: Особенности развития детского голоса (Музыка)



Copyright © GeoRUS, Геологические сайты альтруист