GeoSELECT.ru



Педагогика / Реферат: Показникові та логарифмічні рівняння, нерівності та їх системи в шкільному курсі математики (Педагогика)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Показникові та логарифмічні рівняння, нерівності та їх системи в шкільному курсі математики (Педагогика)



3. Аналіз діючих підручників та тестів.

Порівняльна характеристика тем.
Останній час тема «Показникова і логарифмічна функція»
вивчається в середній школі за підручником під редакцією А.Н.Колмогорова.
На сьогоднішній день з’явився новий підручник авторами якого є М.І. Шкіль,
З.І. Слєпкань, О.С. Дубінчук, в якому данна тема вивчається дещо по іншому.
Проведемо порівняльну характеристику вивчення данної теми в згаданих
підручниках.

Тема: «Показникова функція».
|Підручник під редакцією |Підручник під редакцією М.І.Шкіль, |
|А.Н.Колмогорова «Алгебра і початки |З.І.Слєпкань, О.С.Дубінчук |
|аналізу у 10-11 кл.» |«Алгебра і початки аналізу у 10-11 |
| |кл.» |
|(1 Показникова функція |(1 Поняття показникової функції. |
|n.1.Степінь з ірраціональним |n.1. Означення і графік |
|показником |показникової функції. |
|Фіксують додатнє число а і ставлять|Дається означення: Функція [pic], |
|кожному числу [pic] число [pic]. |де а>0, [pic] називається |
|Цим самим отримують числову функцію|показниковою (з основою а). |
|[pic], визначену на множені Q |Вивчення показникової функції |
|раціональних чисел. Зазначається, |починається з функції [pic], |
|що при а=1 функція [pic] стала, |потім розглядається [pic], |
|так як [pic] для будь-якого |будуються їхні графіки і |
|раціонального числа. |порівнюються. Далі розглядається |
|Будуються графіки функцій [pic] і |функція [pic]. Порівнюються графіки|
|[pic] і порівнюються. Далі |функції [pic] і [pic]. З графікив |
|описується як визначається число |зчитуються спільні властивості. |
|[pic] для ірраціональних [pic] при |Далі порівнюються графіки функцій |
|а>1, в загальних рисах. Аналогічно |[pic]([pic]) і [pic]([pic]). З |
|описується визначення числа [pic], |графіків зчитуються властивості |
|для [pic]. Крім цього вважають, що |функцій. |
|[pic] для будь-якого [pic] і | |
|[pic][pic]для [pic][pic][pic] | |
|n.2. Властивості показникової |n.2. Загальні властивості |
|функції. |показникової функції. |
|Означення: Функція, задана формулою|D(y)=R |
|[pic] (де a>0, [pic]), називається |[pic] |
|показниковою з основою а. |якщо x=0, показникова функція [pic]|
|Формулюються основні властивості: | |
|Область визначення множина R |Зазначені вище властивості |
|дійсних чисел. |доводяться, розглядаються всі |
|Область значень множина R+ всіх |можливі випадки. Далі наводяться |
|додатніх дійсних чисел. |властивості без доведення. |
|При [pic] функція зростає на всій |якщо [pic] [pic] і [pic] то [pic]. |
|числовій прямій; при [pic] функція |якщо [pic] і [pic], то якеб не було|
|спадає на множині R. |додатнє число N, існує, і до того ж|
|При будь-яких дійсних значеннях х і|єдине, таке значення х, що [pic] |
|у справедливі рівності | |
| | |
|[pic] | |
|[pic]; | |
|[pic] | |
|[pic] | |
|[pic]. | |
| |n.3. Властивості графіка |
| |показникової функції. |
| |Графік розміщений у верхній |
| |півплощині, тобто там де ординати |
| |додатні. |
| |Будь-яка пряма, паралельна осі 0Y, |
| |перетинає графік і до того ж тільки|
| |в одній точці. |
| |Крива проходить через точку (0;1), |
| |тобто коли х=0, функція чисельно |
| |дорівнює 1. |
| |З двох точок графіка вище розміщена|
| |та , яка лежить правіше, тобто в |
| |міру просування зліва на право він |
| |піднімається вгору. |
| |На графіку є точки, які лежать вище|
| |будь-якої прямої, паралельної осі |
| |0х. На графіку є точки, що лежать |
| |нижче будь-якої прямої, проведеної |
| |у верхнії півплощині паралельно осі|
| |Х. |
| |Будь-яка пряма, що паралельна осі Х|
| |і лежить у верхній півплощині, |
| |перетинає графік, і при чому в |
| |одній точці. |
| |n.4.Приклади застосування |
| |властивостей показникової функції. |
| |В цьому пункті наводяться приклади |
| |вправ на показникову функцію і |
| |варіанти їх розв’язування. |
| |n.5. Використання показникової |
| |функції під час вивчення явищ |
| |навколишнього середовища |
| |Задача про радіоактивний розпад. |
| |Задача про зміну атмосферного |
| |тиску. |
| |Задача про розмноження бактерій. |
| |Задача про вакуумування. |
| |Задача про приріст деревини. |
| |Всі запропоновані задачі наводяться|
| |з розв’язанням. |
| |n.6. Основні показникові |
| |тотожності. |
| |Для будь-яких дійсних значень х і у|
| |справедливі рівності: |
| |[pic] |
| |[pic]; |
| |[pic] |
| |[pic] |
| |[pic] |
|(2 Розв’язування показникових |(2 Розв’язування показникових |
|рівнянь і нерівностей. |рівнянь і нерівностей. |
|n.1. Рівняння. |n.1. Показникові рівняння. |
|Розглядається найпростіше |Показниковим називають рівняння, в |
|показникове рівняння [pic], [pic] і|яких невідоме входить лише до |
|[pic]. Кажуть, що у випадку [pic] |показників степенів при сталих |
|або [pic] рівняння не має |основах. Найпростішим рівнянням є |
|розв’язків. |[pic] [pic] і [pic][pic]. Говорять,|
|Нехай [pic]. Функція [pic] на |що загального методу розв’язування |
|проміжку [pic] зростає при [pic] |показникових рівнянь немає. |
|(спадає при [pic]) і набуває |Виділяють кілька типів показникових|
|додатних значень. Застосувавши |рівнянь і наводять схеми (приклади)|
|теорему про корінь, дістаємо, що |їх розв’язання. |
|рівняння при будь-якому [pic], |Найпоширеніший спосіб: зведення |
|[pic], має єдиний корінь. |обох частих показникового рівняння |
|Щоб його знайти треба [pic]подати |до спільної основи. Приклади. |
|у вигляді [pic]. Очевидно, що [pic]|Спеціальні способи розв’язання: |
|є розв’язком рівняння [pic] , |зведення до спільного показника. |
|демонструється на графіку функції. |А також показникове рівняння |
|Розглядається 4 приклади. |перетворюють відомими методами: |
| |заміни, зведення до квадратного |
| |рівняння, а потім вже |
| |використовують певну схему. |
|n.2. Нерівності і системи рівнянь. |n.2. Розв’язування нерівностей, які|
|Розв’язання найпростійших |містять показникову функцію. |
|показникових показникових |Найпростішими є нерівності виду |
|нерівностей грунтується на відомій |[pic]. Під час розв’язування |
|властивості функції [pic]; ця |використовують властивість |
|функція зростає, якщо [pic], і |монотонності показникової функції. |
|спадає, якщо [pic]. Розглядаються |І кажуть, що для [pic] |
|приклади. |розв’язування даної нерівності |
| |зведеться до розв’язування |
| |нерівності [pic], а для [pic] |
| |зводиться до розв’язування |
| |нерівності [pic]. Приклади |
| |розв’язання нерівностей. |

Тема: «Логарифмічна функція».
|Підручник під редакцією |Підручник під редакцією М.І.Шкіль, |
|А.Н.Колмогорова «Алгебра і початки |З.І.Слєпкань, О.С.Дубінчук |
|аналізу у 10-11 кл.» |«Алгебра і початки аналізу у 10-11 |
| |кл.» |
|(1 Логарифми і їх властивості. |(1 Логарифми. |
|n.1.Логарифм. |n.1. Поняття логарифма. |
|Даэться означення: Логарифмом числа|Дається означення: Корінь рівняння |
|b за основою а називається |[pic], де a>0, a[pic]1, називають |
|показник степеня, до якого слід |логарифмом числа N за основою а. |
|піднести основу а, щоб отримати |Логарифмом числа N за основою а |
|число b. |(a>0, a[pic]1) називається показник|
|Тут же зазначається, що формулу |степеня х, до якого треба піднести |
|[pic] ( де b>0, a[pic]1) називають |а, щоб дістати число N. |
|основною логарифмічною тотожністю. |Далі наводиться логарифмічна |
| |рівність [pic] і показникова |
| |рівність [pic] і зазначається, що |
| |ці рівності визначають одне і теж |
| |співвідношення. Наводяться три |
| |основні задачі: |
| |Знайти число N за даним його |
| |логарифмом b і за основою а. |
| |Знайти основу а за даним числом N і|
| |його логарифмом b. |
| |Знайти логарифм від даного числа N |
| |за данною основою а. |
| |Далі наводять приклади. |
| |n.2. Основна логарифмічна |
| |тотожність. |
| |Розглядається показникова рівність|
| |[pic](1). За означенням логарифма |
| |[pic](2), [pic](3). Рівність (3) |
| |називається основною логарифмічною |
| |тотожністю. |
|n.2. Основні властивості логарифма.|n.3. Основні властивості логарифма.|
| | |
|Для будь-яких a>0 (a(1) і будь-яких|Т.1. Логарифм добутку двох додатних|
|додатніх х і у виконуються рівності|множників дорівнює сумі їх |
| |логарифмів, тобто [pic] де [pic] |
|[pic] |[pic] |
|[pic] |Т.2. Логарифм частки двох додатних |
|[pic] |чисел (дробу) дорівнює різниці |
|[pic] |логарифмів діленого і дільника |
|[pic] |(чисельника і знаменника), тобто |
|Далі наводиться формула переходу |[pic], де [pic] [pic] |
|від однієї основи логарифма до |Наслідок: Логарифм дробу, чисельник|
|іншої [pic] |якого дорівнює одиниці, дорівнює |
|Далі дається означення десяткового |логарифму знаменника взятого з |
|логарифма на описовому рівні: |протилежним знаком. |
|Десятковим називається логарифм за |Т.3. Логарифм степеня додатного |
|основою10 і позначається [pic]. Але|числа дорівнює показнику степеня, |
|більш конкретно на десяткових |помноженому на логарифм основи |
|логарифмах не зупиняються. |цього степеня, тобто [pic], де m - |
| |будь-яке число, [pic] |
| |Т.4. Логарифм кореня з додатного |
| |числа дорівнює логарифму |
| |підкореневого виразу, поділеного на|
| |показник кореня, тобто [pic] |
| |5. [pic] |
| |[pic] |
| |Всі властивості доводяться. |
| |n.4. Деякі важливі тотожності, що |
| |містять логарифми. |
| |[pic] |
| |[pic] |
| |[pic] |
| |Всі тотожності доводяться. |
| |n.5. Потенціювання |
| |Перетворення за допомогою якого за |
| |даним логарифмом числа (виразу) |
| |визначають саме число (вираз), |
| |називають потенціюванням. |
| |n.6. Перехід від однієї основи |
| |логарифма до іншої. |
| |Вводиться формула [pic] |
| |n.7. Натуральні логарифми з основою|
| |е називають натуральним, або |
| |неперовим. [pic] |
|(2 Логарифмічна функція |(2 Логарифмічна функція |
|Функція задана формулою [pic], |n.1. Поняття логарифмічної функції:|
|називається логарифмічною з основою| |
|а. |Функцію [pic], називають |
|Перечисляють основні властивості |логарифмічною функцією за основою а|
|цієї функції. Властивості |(a>0 ,a(1). Зазначається, що графік|
|аналогічні до перших трьох |функції [pic] можна дістати з |
|властивостей логарифмічної функції |графіка функції [pic], симетрично |
|наведені у підручнику Шкіля М.І. |відобразивши останній відносно |
|Далі зазначається, що графіки |прямої у=х. |
|показникової і логарифмічної, що | |
|мають однакову основу, симетричні |n.2. Властивості логарифмічної |
|відносно прямої у=х. Потім |функції. |
|розглядаються приклади застосування|Область визначення логарифмічної |
|властивостей логарифмічної функції.|функції множина всіх додатніх |
|На цьому вивчення теми логарифмічна|чисел. |
|функція в підручнику під редакцією |Область значень- множина всіх |
|Колмогорова закінчується. |дійсних чисел. |
| |Логарифмічна функція на всій |
| |області визначення R+ зростає, якщо|
| |a>1 і спадає, якщо 0

Новинки рефератов ::

Реферат: Лекарственные растения (Биология)


Реферат: Основные положения учения Дарвина (Биология)


Реферат: Основні правила безпеки під час обслуговування електроустановок (Безопасность жизнедеятельности)


Реферат: Тыловое обеспечение (Военная кафедра)


Реферат: Органическая социология Спенсера (Социология)


Реферат: Продвижение товара на рынке и методы его продвижения (Предпринимательство)


Реферат: Эстетика модернизма и постмодернизма (Искусство и культура)


Реферат: Бизнес план социально инвестиционной программы Пуховый мир (Менеджмент)


Реферат: Билеты по общей биологии за весенний семестр 2001 года (Биология)


Реферат: Основные приципы международного права (Международное публичное право)


Реферат: Древний Египет. В тени пирамид. (Культурология)


Реферат: Конституційний суд України (Право)


Реферат: Ересь патриотизма (Политология)


Реферат: Миссия, цели и стратегия компании Microsoft (Менеджмент)


Реферат: Порошковая металлургия (Технология)


Реферат: Цепные дроби (Математика)


Реферат: Социальная мобильность (Социология)


Реферат: Великий князь Михаил Тверской (История)


Реферат: Гюстав Курбе (Искусство и культура)


Реферат: Арбитражное соглашение (Международное частное право)



Copyright © GeoRUS, Геологические сайты альтруист