GeoSELECT.ru



Химия / Реферат: Альдегіди (Химия)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Альдегіди (Химия)


Опорний конспект

з хімії
на тему:

“Насичені одноатомні спирти”



Виконав:
учень 11-А класу
середеньої школи № 96

Коркуна Дмитро



Насичені одноатомні спирти – похідні насичених вуглеводнів, де один
атом Гідрогену заміщений на одну гідроксильну (функціональну) групу.
СnH2n+1OH – загальна формула насичених одноатомних спиртів

Етанол

CH3OH – молекулярна формула

Н


|


H – C– O – H – структурна ф-ла

|

H СН3 – ОН – скорочена

структурна формула

Метанол

С2Н5ОН – молекулярна формула

Н Н


| |


H– C – С – O – H – структурна ф-ла

| |

H H СН3 –CH2 – ОН – скорочена

структурна формула
Електронна формула.
Етанол
Н ?- ?+
Н : С : О : Н
Н
Метанол
Н Н ?- ?+
Н : С : С: О : Н
Н Н
Ізомерія
Для спирту С4Н9ОН характерні такі ізомери:
4 3 2 1
СН3 – СН2 – СН2 – СН2 – ОH
Бутанол –1
4 3 1 1
СН3 – СН2 – СН – СН3
|
OH
Бутанол - 2



CH3 – CH – CH2 – OH
|
CH3
2- Метилпропанол-1
CH3
1 2 | 3
СН3 – С – СН3
|
OH
2- Метилпропанол-2
Фізичні властивості метанолу і етанолу
Метанол і етанол – за нормальних умов рідини, легші за воду, мають
специфічний запах, як полярні сполуки, вони добре розчинні у воді Ткип.
Метанолу дорівнює 650 С, етанолу– 780 С.
Метанол і етанол – дуже подібні рідини, розрізнити їх можна лише хім.
способом або за температурою кипіння.
Хімічні властивості метанолу й етанолу:
Повне окиснення (горіння)
2СН3 – ОН + 3О2 > 2СO2 + 4 H2O ?H=715 кДж/моль
Неповне окиснення
O О
|| ||
С2Н5ОН [pic]СН3 – С [pic] СН3 – С
-Н2О | -Н2О

C
Заміщення атома гідрогену
2CH3–CH2 – ОН+ 2 Na>2CH3–CH2–O Na + H2
Заміщення гідроксильної групи на галоген
СН3 – СН2 + ОН + Н – Сl>CН3 –СН2 –Сl
Дегідратація
С2Н5 ОН>(t 2700) CН2 =СН2+Н2O



6. Реакція естирифікації – взаємодія карбонових кислотіз спиртами при
нагріванні і наявності каталізатора .
O O
|| ||
СН3 – С + HO – C2H5 ?(t0,k,t) CH3 – C +H2O
| |
OH C2H5
7. Внутрішньо молекулярна дегідратація
2С2Н5 – ОН >(t0,k,t) С2Н5– О– С2H5 – O –C2H5 + H2O
Способи добування метанолу
Суха перегонка деревини
З синтез газу
СО +2Н2 >(t0,R,k,t)CH3OH
Способи добування етанолу
Гідроліз галоген пхідних
СН3 – С2Н2Cl + H2O >CH3 CH2OH + HCl
Відновлення альдинідів
O
||
СН3 – С + H2>CH5CH2OH
|
H
Спиртове бродіння глюкози
С6Н12О6 >(бродіння) С2Н5ОН + 2СО2
Гідратація етилену
Гідратація етилену
Застосування етанолу й метанолу
Основа алкогольних напоїв
Розчинники
Органічний синтез і лабораторна практика
Добувають речовини, що є вихідними здля виробництва каучуку.




Реферат на тему: Алюминий

Алюминий

Алюминий - самый распостраненный в земной коре металл. На его долю
приходится 5,5-6,6 мол. доли % или 8 масс. %. Главная масса его
сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом
разрушения образованных ими горных пород является глина, основной состав
которой отвечает формуле Al2O3.2SiO2.2H2O. Из других природных форм
нахождения алюминия наибольшее значение имеют боксит Al2O3.xH2O и минералы
корунд Al2O3 и криолит AlF3.3NaF.
Впервые алюминий был получен Велером в 1827 году действием
металлического калия на хлорид алюминия. Однако, несмотря на широкую
распространенность в природе, алюминий до конца XIX века принадлежал к
числу редких металлов.
В настоящее время в промышленности алюминий получают электролизом
раствора глинозема Al2O3 в расплавленнном криолите. Al2O3 должен быть
достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с
большим трудом. Температура плавления Al2O3 около 2050оС, а криолита -
1100оС. Электролизу подвергают расплавленную смесь криолита и Al2O3,
содержащую около 10 масс.% Al2O3, которая плавится при 960оС и обладает
электрической проводимостью, плотностью и вязкостью, наиболее
благоприятствующими проведению процесса. При добавлении AlF3, CaF2 и MgF2
проведение электролиза оказывается возможным при 950оС.
В периодической системе алюминий находится в третьем периоде, в
главной подгруппе третьей группы. Заряд ядра +13. Электронное строение
атома 1s22s22p63s23p1. Металлический атомный радиус 0,143 нм, ковалентный -
0,126 нм, условный радиус иона Al3+ - 0,057 нм. Энергия ионизации Al - Al+
5,99 эВ.
Наиболее характерная степень окисления атома алюминия +3.Отрицательная
степень окисления проявляется редко. Во внешнем электронном слое атома
существуют свободные d-подуровни. Благодаря этому его координационное число
в соединениях может равняться не только 4 (AlCl4-, AlH4-, алюмосиликаты),
но и 6 (Al2O3,[Al(OH2)6]3+).
В виде простого вещества алюминий - серебристо-белый, довольно твердый
металл с плотностью 2,7 г/см3 (т.пл. 660оС, т. кип. ~2500оС).
Кристаллизуется в гранецентрированной кубической решетке. Характеризуется
высокой тягучестью, теплопроводностью и электропроводностью (составляющей
0,6 электропроводности меди). С этим связано его использование в
производстве электрических проводов. При одинаковой электрической
проводимости алюминмевый провод весит вдвое меньше медного.
На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень
плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и
придающей ему матовый вид. При обработке поверхности алюминия сильными
окислителями (конц. HNO3, K2Cr2O7) или анодным окислением толщина защитной
пленки возрастает. Устойчивость алюминмя позволяет изготавливать из него
химическую аппаратуру и емкости для хранения и транспортировки азотной
кислоты.
Алюминий легко вытягивается в проволоку и прокатывается в тонкие
листы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и
фармацевтической промышленности для упаковки продуктов и препаратов.
Основную массу алюминия используют для получения различных сплавов,
наряду с хорошими механическими качествами характеризующихся своей
легкостью. Важнейшие из них - дуралюминий (94% Al, 4% Cu, по 0,5% Mg, Mn,
Fe и Si), силумин (85 - 90% Al, 10 - 14% Sk, 0,1% Na) и др. Алюминиевые
сплавы применяются в ракетной технике, в авиа-, авто-, судо- и
приборостроении, в производстве посуды и во многих других отраслях
промышленности. По широте применения сплавы алюминия занимают второе место
после стали и чугуна.
Алюминий, кроме того, применяется как легирующая добавка ко многим
сплавам для придания им жаростойкости.
При накаливании мелко раздробленного алюминия он энергично сгорает на
воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и
бромом соединение происходит уже при обычной температуре, с иодом - при
нагревании. При очень высоких температурах алюминий непосредственно
соединяется также с азотом и углеродом. Напротив, с водородом он не
взаимодействует.
По отношению к воде алюминий вполне устойчив. Но если механическим
путем или амальгамированием снять предохраняющее действие оксидной пленки,
то происходит энергичная реакция:
2Al + 6H2O = 2Al(OH)3 + 3H2(
Сильно разбавленные, а также очень концентрированные HNO3 и H2SO4 на
алюминий почти не действуют (на холоду), тогда как при средних
концентрациях этих кислот он постепенно растворяется. Чистый алюминий
довольно устойчив и по отношению к соляной кислоте, но обычный технический
металл в ней растворяется.
Алюминий заметно растворяется в растворах солей, имеющих вследствие их
гидролиза кислую или щелочную реакцию, например, в растворе Na2CO3.
В ряду напряжений он располагается между Mg и Zn. Во всех своих
устойчивых соединениях алюминий трехвалентен.
Соединение алюминия с кислородом сопровождается громадным выделением
тепла (1676 кДж/моль Al2O3), значительно большим, чем у многих других
металлов. В виду этого при накаливании смеси оксида соответствующего
металла с порошком алюминия происходит бурная реакция, ведущая к выделению
из взятого оксида свободного металла. Метод восстановления при помощи Al
(алюмотермия) часто применяют для получения ряда элементов (Cr, Mn, V, W и
др.) в свободном состоянии.
Алюмотермией иногда пользуются для сварки отдельных стальных частей, в
часности стыков трамвайных рельсов. Применяемая смесь (“термит”) состоит
обычно из тонких порошков алюминия и Fe3O4. Поджигается она при помощи
запала из смеси Al и BaO2. Основная реакция идет по уравнению:
8Al + 3Fe3O4 = 4Al2O3 + 9Fe + 3350 кДж
Причем развивается температура около 3000оС.
Оксид алюминия представляет собой белую, очень тугоплавкую (т. пл.
2050оС) и нерастворимую в воде массу. Природный Al2O3 (минерал корунд), а
также полученный искусственно и затем сильно прокаленный отличается
большой твердостью и нерастворимостью в кислотах. В растворимое состояние
Al2O3 (т. н. глинозем) можно перевести сплавлением со щелочами.
Обычно загрязненный оксидом железа природный корунд вследствие своей
чрезвычайной твердости применяется для изготовления шлифовальных кругов,
брусков и т.д. В мелко раздробленном виде он под названием наждака служит
для очистки металлических поверхностей и изготовления наждачной бумаги. Для
тех же целей часто пользуются Al2O3, получаемым сплавлением боксита
(техническое название - алунд).
Прозрачные окрашеннные кристаллы корунда - красный рубин - примесь
хрома - и синий сапфир - примесь титана и железа - драгоценные камни. Их
получают так же искусственно и используют для технических целей, например,
для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы
рубинов, содержащих малую примесь Cr2O3, применяют в качестве квантовых
генераторов - лазеров, создающих направленный пучок монохроматического
излучения.
Al(OH)3 представляет собой объемистый студенистый осадок белого цвета,
практически нерастворимый в воде, но легко растворяющийся в кислотах и
сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и
основные и особенно кислотные его свойства выражены довольно слабо. В
избытке NH4OH гидроксид алюминия нерастворим. Одна из форм
дегидратированного гидроксида - алюмогель используется в технике в качестве
адсорбента.
При взаимодействии с сильными щелочами образуются соответствующие
алюминаты:
NaOH + Al(OH)3 = Na[Al(OH)4]
Алюминаты наиболее активных одновалентных металлов в воде хорошо
растворимы, но ввиду сильного гидролиза растворы их устойчивы лишь при
наличии достаточного избытка щелочи. Алюминаты, производящиеся от более
слабых оснований, гидролизованы в растворе практически нацело и поэтому
могут быть получены только сухим путем (сплавлением Al2O3 с оксидами
соответствующих металлов). Образуются метаалюминаты, по своему составу
производящиеся от метаалюминиевой кислоты HAlO2. Большинство из них в воде
нерастворимо.
С кислотами Al(OH)3 образует соли. Производные большинства сильных
кислот хорошо растворимы в воде, но довольно значительно гидролизованы, и
поэтому растворы их показывают кислую реакцию. Еще сильнее гидролизованы
растворимые соли алюминия и слабых кислот. Вследствие гидролиза сульфид,
карбонат, цианид и некоторые другие соли алюминия из водных растворов
получить не удается.
В водной среде анион Al3+ непосредственно окружен шестью молекулами
воды. Такой гидратированный ион несколько диссоциирован по схеме:
[Al(OH2)6]3+ + H2O = [Al(OH)(OH2)5]2+ + OH3+
Константа его диссоциации равна 1.10-5,т.е. он является слабой
кислотой (близкой по силе к уксусной). Октаэдрическое окружение Al3+ шестью
молекулами воды сохраняется и в кристаллогидратах ряда солей алюминия.
Алюмосиликаты можно рассматривать как силикаты, в которых часть
кремниекислородных тетраэдров SiO44- заменена на алюмокислородные тетраэдры
AlO45-. Из алюмосиликатов наиболее распространены полевые шпаты, на долю
которых приходится более половины массы земной коры. Главные их
представители - минералы
ортоклаз K2Al2Si6O16 или K2O.Al2O3.6SiO2
альбит Na2Al2Si6O16 или Na2O.Al2O3.6SiO2
анортит CaAl2Si2O8 или CaO.Al2O3.2SiO2
Некоторые алюмосиликаты обладают рыхлой структурой и способны к
ионному обмену. Такие силикаты - природные и особенно искусственные -
применяются для водоумягчения. Кроме того, благодаря своей сильно развитой
поверхности, они используются в качестве носителей катализаторов, т.е. как
материалы, пропитываемые катализатором.
Галогениды алюминия в обычных условиях - бесцветные кристаллические
вещества. В ряду галогенидов алюминия AlF3 сильно отличается по свойствам
от своих аналогов. Он тугоплавок, мало растворяется в воде, химически
неактивен. Основной способ получения AlF3 основан на действии безводного HF
на Al2O3 или Al:
Al2O3 + 6HF = 2AlF3 + 3H2O
Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма
реакционноспособны и хорошо растворимы не только в воде, но и во многих
органических растворителях. Взаимодействие галогенидов алюминия с водой
сопровождается значительным выделением теплоты. В водном растворе все они
сильно гидролизованы, но в отличие от типичных кислотных галогенидов
неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже
при обычных условиях, AlCl3, AlBr3 и AlI3 дымят во влажном воздухе
(вследствие гидролиза). Они могут быть получены прямым взаимодействием
простых веществ.
Плотности паров AlCl3, AlBr3 и AlI3 при сравнительно невысоких
температурах более или менее точно соответствуют удвоенным формулам -
Al2Hal6. Пространственная структура этих молекул отвечает двум тетраэдрам с
общим ребром. Каждый атом алюминия связан с четырьмя атомами галогена, а
каждый из центральных атомов галогена - с обоими атомами алюминия. Из двух
связей центрального атома галогена одна является донорно-акцепторной,
причем алюминий функционирует в качестве акцептора.
С галогенидными солями ряда одновалентных металлов галогениды алюминия
образуют комплексные соединения, главным образом типов M3[AlF6] и M[AlHal4]
(где Hal - хлор, бром или иод). Склонность к реакциям присоединения вообще
сильно выражена у рассматриваемых галогенидов. Именно с этим связано
важнейшее техническое применение AlCl3 в качестве катализатора (при
переработке нефти и при органических синтезах).
Из фторалюминатов наибольшее применение (для получения Al, F2, эмалей,
стекла и пр.) имеет криолит Na3[AlF6]. Промышленное производство
искусственного криолита основано на обработке гидроксида алюминия
плавиковой кислотой и содой:
2Al(OH)3 + 12HF + 3Na2CO3 = 2Na3[AlF6] + 3CO2 + 9H2O
Хлоро-, бромо- и иодоалюминаты получаются при сплавлении
тригалогенидов алюминия с галогенидами соответствующих металлов.
Хотя с водородом алюминий химически не взаимодействует, гидрид
алюминия можно получить косвенным путем. Он представляет собой белую
аморфную массу состава (AlH3)n. Разлагается при нагревании выше 105оС с
выделением водорода.
При взаимодействии AlH3 с основными гидридами в эфирном растворе
образуются гидроалюминаты:
LiH + AlH3 = Li[AlH4]
Гидридоалюминаты - белые твердые вещества. Бурно разлагаются водой.
Они - сильные восстановители. Применяются (в особенности Li[AlH4]) в
органическом синтезе.
Сульфат алюминия Al2(SO4)3.18H2O получается при действии горячей
серной кислоты на оксид алюминия или на каолин. Применяется для очистки
воды, а также при приготовлении некоторых сортов бумаги.
Алюмокалиевые квасцы KAl(SO4)2.12H2O применяются в больших количествах
для дубления кож, а также в красильном деле в качестве протравы для
хлопчатобумажных тканей. В последнем случае действие квасцов основано на
том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается
в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель,
прочно удерживает его на волокне.
Из остальных производных алюминия следует упомянуть его ацетат (иначе
- уксуснокислую соль) Al(CH3COO)3, используемый при крашении тканей (в
качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия
легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной
кислоте, но растворим в сильных кислотах и щелочах.
Несмотря на наличие громадных количеств алюминия в почках, растениях, как
правило, содержат мало этого элемента. Еще значительно меньше его
содержание в животных организмах. У человека оно составляет лишь
десятитысячные доли процента по массе. Биологическая роль алюминия не
выяснена. Токсичностью соединения его не обладают.




Новинки рефератов ::

Реферат: Значение научно-технической революции ХХ века (История)


Реферат: Гуманизм в коррекционном обучении (Педагогика)


Реферат: Травмы, возникающие при падении с высоты (Криминалистика)


Реферат: Внимание (Психология)


Реферат: Курсовая работа по истории России (История)


Реферат: Истоки истории (Философия)


Реферат: Word 9x (Программирование)


Реферат: Мировые деньги (Банковское дело)


Реферат: Петр Великий - человек и государственный деятель (История)


Реферат: Исследование толерантности (Психология)


Реферат: Физические основы работы лазерного принтера (Физика)


Реферат: Генетика и эволюция (Биология)


Реферат: Маньеризм в моде (Культурология)


Реферат: Воздействие человека на природу (Биология)


Реферат: Альбрехт Дюрер (Исторические личности)


Реферат: Автогрейдер (Транспорт)


Реферат: Русская живопись XIX века (Искусство и культура)


Реферат: Русское искусство 18 века (Искусство и культура)


Реферат: Нефть: происхождение, состав, методы и способы переработки (Технология)


Реферат: Комплексный дипломный проект: Проект участка по производству технологических приспособлений для электромеханического восстановления и укрепления поверхностного слоя деталей машин. Цилиндрические поверхности (Технология)



Copyright © GeoRUS, Геологические сайты альтруист