|
Реферат: Жидкие растворы (Химия)
СПб ГИТМО (ТУ) Кафедра: Физической химии, волокнистой и интегральной оптики.
Реферат
Жидкие растворы.
Студент: Тулякова М. 156гр. Преподаватель: Успенская М.В.
Санкт- Петербург
2002г Оглавление:
Вступление 3
I. Определение раствора. 4
II. Процесс растворения 5
III. Классификации растворов. 7
IV. Способы выражения состава растворов 8
V. Растворимость. Зависимость растворимости от температуры. 10
VI. Теплоты растворения и разбавления. 12
VII.Давление пара растворов. Состав пара растворов. 13
VIII Неидеальные растворы. 15
IX.Активность и коэффициент активности. 16
X.Кристаллизация растворов. 17
XI Кипение растворов. 18
XII Осмос. 18
Список литературы 20
Вступление Растворы находят широкое применение в самых различных областях практики. Категории растворов относятся и природный раствор воды, и такие материалы, как сырая нефть и различные нефтепродукты-бензины, керосин, вазелин, парафин, смазочные масла, жидкие сплавы металлов, расплавленные смеси силикатов смеси органических растворителей, различные водноспиртовые смеси и др. Во второй половине прошлого века существовало две противоположных точки зрения на процесс растворения. Для первой точки зрения характерно рассмотрение процесса растворения как явления химического, для второго - как физического. В химических теориях предполагалось, что растворенное вещество и растворитель химически взаимодействуют между собой. С физической точки зрения растворенное вещество можно рассматривать, как находящееся в газообразном состоянии и применять к нему законы кинетической теории газов. Каждая из этих теорий была разработана и внесла свой вклад в создание современной теории растворов, в которой принимаются во внимание и химические, и физические факторы. В развитии учения о растворах выдающаяся роль принадлежит работам Д.И. Менделеева. Он рассматривал растворы как неустойчивые химические соединения постоянного состава, находящиеся в состоянии частичной диссоциации. Этим было положено начало химической теории растворов в противовес физическим теориям, игнорировавшим значение химического взаимодействия. Общей теории растворов - теории, которая давала бы возможность определять свойства раствора по известным свойствам компонентов в чистом состоянии и известному составу раствора, - в настоящее время еще нет. Только для растворов очень разбавленных (в пределе бесконечно разбавленных) удалось еще в 80-х годах прошлого века создать начала количественной теории, дающей возможность определять некоторые свойства растворов по известной их концентрации. В таких растворах молекулы растворенного вещества разобщены друг от другого большим количеством молекул растворителя. Вследствие этого их взаимодействие не проявляется в заметной степени.
Определение раствора.
Растворы - однородная многокомпонентная система, состоящая из растворителя, растворённых веществ и продуктов их взаимодействия, относительные количества которых могут изменяться в широких пределах. Этот термин может относиться к любому агрегатному состоянию системы. По агрегатному состоянию растворы могут быть жидкими (морская вода), газообразными (смеси азота с аммиаком) или твёрдыми (многие сплавы металлов). Газообразные растворы обычно представляют собой смеси газов и реже – растворы жидкостей или твердых тел в газах. Газы способны смешиваться во всех отношениях не при любых условиях. При высоких температурах и давлении наблюдается неполное смешение газов с образованием двух газообразных фаз, находящихся в равновесии. Твердые растворы образуются кристаллизации жидких расплавов или при растворении газов в твердых веществах. Различают твердые растворы замещения, внедрения и вычитания. Твердые растворы замещения, которые образуются при сохранении структуры кристаллической решетки растворителя являются наиболее распространенными. При образовании твердых растворов замещения в узлах кристаллической решетки данного вещества атомы, молекулы и ионы замещаются частицами другого вещества. Образование таких растворов возможно, если оба вещества близки по кристаллическим свойствам и размерам частиц. По приближенному правилу В.Юм- Розери твердые растворы замещения образуются в тех случаях, когда размеры двух частиц отличаются не более чем на 14-15%. Устойчивыми являются твердые растворы замещения любого состава. Твердые растворы внедрения получаются путем внедрения частиц одного вещества в междоузлия кристаллической решетки другого вещества (растворителя). Растворы внедрения образуются в том случае, когда размеры частиц внедряемого вещества меньше размеров частиц растворителя. Такие растворы обычно возникают при растворении растворов неметаллов в металлах. При внедрении новых частиц в промежутки между атомами металла происходит увеличение напряжения в кристаллической решетке, в связи с такие растворы образуются сравнительно редко. Твердые растворы вычитания встречаются значительно реже. Они получаются при выпадении некоторых атомов из кристаллической ячейки, в связи с чем эти растворы иногда называются твердыми растворами с дефектной решеткой. Наиболее часто встречаются жидкие растворы. В моем реферате речь пойдет преимущественно о жидких растворах. Растворы занимают промежуточное место между химическими соединениями и механическими смесями. Однородность растворов делает их схожими с химическими соединениями, так же на химическое взаимодействие между компонентами растворов указывает выделение теплоты при растворении некоторых веществ. Растворы отличаются от химических соединений тем, что состав взаимодействующих веществ может изменяться в широких пределах. В свойствах раствора можно обнаружить многие свойства компонентов его составляющих, что характерно для механических соединений.
Процесс растворения
Процесс растворения кристалла в жидкости происходит так. Когда кристалл соли, например, хлорида натрия попадает в воду, то распложенные на его поверхности ионы притягивают полярные молекулы воды (ион-дипольное взаимодействие). К ионам натрия молекулы притягиваются своими отрицательными полюсами, а к ионам хлора положительными. Но если ионы протягивают к себе молекулы воды, то и молекулы воды притягивают к себе ионы. В то же время притянутые молекулы воды испытывают толчки со стороны непритянутых молекул воды, находящихся в тепловом движении. И этих толчков, а так же тепловых колебаний самих ионов достаточно для того, чтобы ион хлора или натрия отделился от кристалла и перешел в раствор. Вслед за первым слоем ионов в раствор переходит следующий слой и таким образом идет постепенное растворение кристалла. Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Гидратация – основная причина диссоциации . Она отчасти затрудняет их обратное соединение (ассоциацию). Под гидратацией обычно понимают совокупность энергетических процессов и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с водой. Слой частиц воды, непосредственно присоединенных к центральной частице растворенного вещества образует вокруг нее гдратную оболочку. Наименьшее число молекул растворителя, удерживаемое около частицы растворенного вещества называется координатным числом гидратации. Координатное число определить трудно, оно зависит от природы растворенного вещества и растворителя. Доказательством того, что компоненты раствора химически взаимодействуют друг с другом, служит тот факт, что многие вещества выделяются из водных растворов в виде кристаллов, содержащих кристаллизованную воду – гидратов; причем на каждую молекулу растворенного вещества приходится определенное число молекул воды. Как правило, гидраты – нестойкие соединения, во многих случаях они разлагаются уже при выпаривании растворов. Но иногда гидраты так прочны, что при выделении растворенного вещества из раствора вода входит в состав его кристаллов. Вещества, в состав которых входят молекулы воды называются кристаллогидратами, а содержащаяся в них вода - кристаллизованной. Прочность связи между гидратами и кристаллизованной водой различна. Многие из них теряют кристаллизованную воду уже при комнатной температуре, для некоторых требуется значительное нагревание, а от кристаллогидрата алюминия, например, не удается удалить воду никакими способами. Состав кристаллогидратов принято изображать формулами, показывающими, какое количество кристаллизованной воды содержит кристаллогидрат. Например, кристаллогидрат сульфата натрия, содержащий на один моль Na2SO4 10 молей воды выражается формулой Na2SO4(10H2O. Иначе протекает диссоциация молекул, которые обладают полярной связью. Молекулы воды, притянувшиеся к концам полярной молекулы (диполь-дипольное взаимодействие), вызывают расхождение ее полюсов – поляризуют молекулу. Такая поляризация в сочетании с колебательным движением атомов в самой молекуле, а так же беспорядочное тепловое движение окружающих ее молекул воды приводит к распаду полярной молекулы на ионы. Как и в случае растворения кристалла с ионной связью эти ионы гидрируются. Гидрированные ионы содержат как постоянное, так и переменное количество молекул воды, это количество зависит от концентрации и других условий. Гидрат постоянного состава образует ион водорода H+, он называется ионом гидроксония. Ион гидроксония благодаря очень маленьким размерам обладает электростатическим полем большой электороотицательности. Он не имеет электронной оболочки и поэтому не испытывает отталкивания от электронных оболочек других атомов. Поэтому в растворах ион гидроксония существует исключительно в виде объединений с молекулами воды. Самый прочный комплекс образуется с одной молекулой воды, который так же окружается гидратной оболочкой из других молекул.
Классификации растворов.
Существует несколько способов классификации растворов. Так, основываясь на величине электрической проводимости, различают растворы электролитов и неэлектролитов. Можно классифицировать растворы по агрегатному состоянию системы и тех частиц, из которых она состоит. Возможна классификация раствора по количеству растворенного вещества в нем присутствующего. Если молекулярные или ионные частицы, распределённые в жидком растворе, присутствуют в нём в таком количестве, что при данных условиях не происходит дальнейшего растворения вещества, раствор называется насыщенным. (Например, если поместить 50 г NaCl в 100 г H2O, то при 20єC растворится только 36 г соли). Насыщенным называется раствор, который находится в динамическом равновесии с избытком растворённого вещества. Поместив в 100 г воды при 20єC меньше 36 г NaCl мы получим ненасыщенный раствор. При нагревании смеси соли с водой до 100?C произойдёт растворение 39,8 г NaCl в 100 г воды. Если теперь удалить из раствора нерастворившуюся соль, а раствор осторожно охладить до 20єC, избыточное количество соли не всегда выпадает в осадок. В этом случае мы имеем дело с перенасыщенным раствором. Перенасыщенные растворы очень неустойчивы. Помешивание, встряхивание, добавление крупинок соли может вызвать кристаллизацию избытка соли и переход в насыщенное устойчивое состояние. С точки термодинамики можно различать идеальные растворы и неидеальные (или реальные). В идеальных растворах, к которым реальные могут только приближаться, внутренняя энергия каждого компонента не зависит от концентрации. Компоненты в идеальном растворе смешиваются, как идеальные газы; предполагается, что сил взаимодействия между частицами нет, и вещества смешиваются без выделения или поглощения теплоты. Растворы, не удовлетворяющие указанным условиям, относят к реальным растворам. Чем меньше концентрация раствора, тем ближе он к идеальному раствору. Растворы изотопов одного элемента в другом почти точно подчиняются законам идеальных растворов. Однородные смеси неполярных веществ (углеводородов) близки к идеальным растворам при всех концентрациях. Растворы полярных веществ, особенно электролитов, обнаруживают заметное отклонение от идеальности уже при концентрациях, отвечающих мольной доле порядка одной миллионной.
Способы выражения состава растворов
Любой раствор состоит из растворителя и растворенного вещества. В случае растворов газов или твердых веществ в жидкостях растворителем обычно считается жидкость, а растворенным веществом – растворенный газ или твердое вещество, независимо от их относительного количественного содержания. Когда компоненты обладают ограниченной смешиваемостью, то растворителем является тот, прибавление которого к раствору возможно в неограниченном количестве без нарушения гомогенности. Если компоненты обладают неограниченной растворимостью, то можно выделить два случая. При значительном различии содержания компонентов растворителем считается вещество, присутствующее в относительно большем количестве. Понятия растворитель и растворенное вещество теряют смысл, когда речь идет о смесях с примерно равными или близкими концентрациями компонентов. В этом случае состав раствора может выражаться различными способами – как с помощью безразмерных единиц – долей или процентов, так и через размерные величины – концентрации. На практике используют более десятка способов выражения концентрации. Вот некоторые из них: 1. Массовая доля растворенного вещества. Отношение массы растворенного вещества B к массе растворителя. [pic] или [pic] 2. Мольная доля растворенного вещества. Отношение количества растворенного вещества к суммарному количеству всех веществ, составляющих раствор, включая растворитель [pic] или [pic] Мольная доля указывает на число молей данного вещества в одном моле раствора. Сумма мольных долей всех составных веществ равна единице:[pic] 3. Объемная доля растворенного вещества: Отношение объема растворенного вещества к сумме объемов вещества и растворителя. [pic] или [pic]
4. Молярная концентрация (или молярность). Определяется отношением числа молей растворенного вещества к объему раствора, выраженному в литрах. Физический смысл молярной концентрации заключается в том, что она указывает на число молей вещества содержащегося в 1 литре его раствора. [pic] 5. Нормальная концентрация (или нормальность). Определяется отношением числа эквивалентов растворенного вещества B к объему раствора, выраженному в литрах. Физический смысл нормальной концентрации заключается в том, что она указывает на число эквивалентов растворенного вещества, содержащегося в 1 литре раствора. [pic]
6. Моляльная концентрация (или моляльность). Определяется отношением числа молей растворенного вещества к массе растворителя. Физический смысл заключается в том, что она показывает, сколько молей вещества растворено в 1 кг (1000г) растворителя. [pic]
Применение того или иного способа выражения концентрации зависит от решения конкретных практических задач.
Растворимость. Зависимость растворимости от температуры.
Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества является его содержание в насыщенном растворе. Если в 100 г воды растворяется более 10 г вещества, то такое вещество называют хорошо растворимым. Если растворяется менее 1 г вещества – вещество мало растворимо. Наконец, вещество считают практически нерастворимым, если в раствор переходит менее 0,01 г вещества. Абсолютно нерастворимых веществ не бывает. Растворение большинства твердых веществ в жидкостях сопровождается обычно поглощением энергии. Это объясняется затратой значительного количества энергии на разрушение кристаллической решетки твердого вещества. В этом случае растворимость твердых веществ увеличивается с ростом температуры. Но если растворение сопровождается выделением энергии, то растворимость с ростом температуры понижается. Такое явление наблюдается при растворении в воде щелочей, солей лития, магния, алюминия. Теоретически пока нельзя вычислить точно величину растворимости данного вещества в определенном растворителе. Сходство в химической природе двух веществ увеличивает их взаимную растворимость. Многие жидкости проявляют способность к неограниченной взаимной растворимости. Так бензол и толуол, вода и этиловый спирт могут смешиваться друг с другом в любых отношениях. Жидкости с ограниченной взаимной растворимостью образуют расслаивающиеся системы. По мере повышения температуры взаимная растворимость увеличивается, и тогда жидкости полностью смешиваются, образуя однородную массу. Температура, при которой наступает смешивание, называется критической температурой смешения. Растворение газов в воде представляет собой экзотермический пресс. Поэтому растворимость газов с повышением температуры уменьшается. Однако растворение газов в органических жидкостях сопровождается поглощением теплоты. Это происходит от того энергия межмолекулярного взаимодействия между молекулами растворителя и растворимого вещества больше, чем энергия притяжения между молекулами газа и растворителя в растворе. На практике растворимость вещества выражается величиной, называемой коэффициентом растворимости. Коэффициент растворимости показывает массу вещества, насыщаемую при данной температуре 100 граммов растворителя.
Растворимость некоторых веществ в воде представлена в таблице |Вещество |Растворимость: масса вещества (г) в 100 г воды при | | |температурах | | |00C |100C |200C |400C |600C |800C |1000C | |SO2 |22,83|16,21 |11,29 |5,41 |3,2 |2,1 |– | |NH3 |89,7 |68,3 |52,9 |31,6 |16,8 |6,5 |0 | |CuSO4 |14,3 |17,4 |20,7 |28,5 |40,0 |55,0 |75,4 | |K2SO4 |7,35 |9,22 |11,11 |14,76 |18,17 |21,4 |24,1 | |Al2(SO4)3 |31,2 |33,5 |36,4 |45,7 |59,2 |73,1 |89,0 | |NaCl |35,7 |35,8 |36,0 |36,6 |37,3 |38,4 |39,8 | |NH4Cl |29,4 |33,3 |37,2 |45,2 |55,2 |65,6 |77,3 | |KNO3 |13,3 |20,9 |31,6 |63,9 |110,0 |169 |243 | |KNO2 |278,8|– |298,4 |334,9 |350 |376 |412,9 |
Теплоты растворения и разбавления.
Изменение энтальпии при переходе твердого, жидкого или газообразного вещества в раствор называется теплотой или энтальпией растворения. Эндотермические реакции характеризуются положительным изменением энтальпии, а экзотермические – отрицательным. Энтальпией растворения называют изменение энтальпии при растворении 1 моль вещества в некотором количестве чистого растворителя. Процесс растворения в термохимии обычно выражают термохимическим уравнением, например процесс растворения a моль Pb(NO3)2 в b моль воды можно представить уравнением: [pic] Теплота растворения зависит от концентрации полученного раствора и от температуры. Особый интерес представляют первая и полная теплоты растворения. Первой теплотой растворения называется изменение энтальпии при растворении 1 моль вещества в бесконечно большом количестве растворителя. В результате этого процесса образуется бесконечно разбавленный раствор. Полной теплотой растворения называется изменение энтальпии при растворении 1 моль вещества в таком количестве чистого растворителя, которой необходимо для образования насыщенного раствора. Тепловой эффект взаимодействия раствора данной концентрации с чистым растворителем называется энтальпией разведения или разбавления. Если раствор, содержащий 1 моль растворенного вещества, разбавляется от данной концентрации до определенной конечной (не бесконечно малой) концентрации, то тепловой эффект тепловой эффект называется промежуточной теплотой разбавления.
Давление пара растворов. Состав пара растворов.
Давление насыщенного пара является весьма важным свойством растворов. С его величиной непосредственно связаны многие свойства растворов. Допустим, что к пару применимы законы идеальных газов. Воспользуемся упрощенной схемой испарения. Растворяя большое количество какого-либо вещества в данном растворителе, мы понижаем концентрацию молекул последнего в единице объема и уменьшаем этим число молекул, вылетающих в единицу времени из жидкой фазы в газообразную. В результате равновесие между жидкостью и паром устанавливается при меньшей концентрации раствора, т.е. при меньшем его давлении. Следовательно, давление насыщенного пара растворителя над раствором, должно быть всегда меньше, чем над чистым растворителем. При этом понижение давления пара будет, тем больше чем больше концентрация растворенного вещества в растворе. Из этого вытекает закон Генри, который можно выразить уравнением: [pic] , где [pic] p – парциальное давление k – константа Генри Закон Генри звучит так: Парциальное давление пара растворенного вещества пропорционально его концентрации в растворе. При NA=1 парциальное давление пара pA представляет собой давление насыщенного данного компонента в свободном состоянии [pic]. Следовательно k=[pic] и равенство принимает вид: [pic] Концентрация растворенного вещества в растворе при выражении ее в мольных долях этого вещества NA связана с концентрацией растворителя как NA+ NB =1. Подставляя это выражение в закон Генри получим: [pic] ( [pic] Разность ([pic]) называется понижением давления насыщенного пара, а отношение [pic] -относительным понижением давления насыщенного пара.
Согласно закону Рауля: Относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле вещества в растворе Если графически изобразить зависимость давления пара каждого вещества двухкомпонентной смеси от его мольной доли, поучиться прямая линия. Пусть даны вещества А и В. Обозначим их мольные доли NA и NB. По закону Рауля имеем: pA=[pic]* NA, pB=[pic]* NВ где p0 есть давление пара чистого вещества. Это суть уравнения прямых, если на осях отложены давления пара и мольные доли. Для общего давления пара раствора отсюда следует равенство: p=[pic]* NA + [pic]* NВ Эта линейная зависимость осложняется если между компонентами смеси действуют силы притяжения, и она изображается не прямой, а кривой линией Если оба компонента раствора в чистом состоянии летучи, то пар будет содержать оба компонента. Однако относительное содержание компонентов в парах в общем случае будет отличаться от относительного содержания их в жидкостях. Для простейших систем легко установить соотношение между составами раствора и пара, равновесного с ним. Только b системе, компоненты которой обладают одинаковым давлением пара в чистом состоянии, состав пара над раствором равен составу раствора. В остальных же случаях состав пара отличен от состава раствора и тем в большей степени, чем больше различаются давления пара над чистыми компонентами. В простейших системах в парах всегда преобладает по сравнению с жидкостью тот из компонентов, который обладает большим давлением пара в чистом состоянии. В количественной форме соотношения между составом пара и жидкости могут быть выведены следующим путем. Обозначим через NA’ и NB’ мольные доли компонентов в парах, причем NA’=[pic] и NB’=[pic] Пользуясь законом Рауля легко получить, что p=[pic], а пользуясь выражением p=[pic] получаем, что [pic]=[pic] Для систем, в которых зависимость давления пара от состава нелинейная, нет общего выражения, в такой простей форме связывающего составы пара и раствора. Зависимость состава пара от состава раствора и общего давления характеризуется законом, открытым Д.И.Коноваловым и носящими его имя. Закон Коновалова характеризует соотношения между составами равновесных жидкостей и пара и влияние добавления того или иного компонента на общее давление пара. Он формулируется следующим образом: а) Повышение относительного содержания компонента в жидкой фазе всегда вызывает увеличение относительного содержания его и в парах. b) В двойной системе пар, по сравнению с находящейся с ним в равновесии жидкостью, относительно более богаче тем из компонентов, прибавление которого к системе повышает общее давление пара, т.е. понижает температуру кипения смеси при данном давлении. Введем в раствор из двух веществ какое-либо новое вещество. В общем случае это вещество распределится между обоими веществами в растворе, пропорционально своей растворимости в каждом из них. Отсюда втекает закон распределения, согласно которому вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества. [pic] где С1B и С2B - концентрации растворенного вещества в первом и втором растворителях; KD(B) – константа распределения вещества B между двумя жидкими несмешивающимися фазами.
Неидеальные растворы.
Реальные растворы в подавляющем большинстве не подчиняются законам идеальных растворов. Очень многие из них не подчиняются, например, закону Рауля, причем известны как положительные, так и отрицательные отклонения. Если давление пара над реальным раствором больше, чем над идеальным такого же состава, то отклонения от закона Рауля называют положительными, а если меньше, то отрицательными. Знак и величина отклонения зависит от природы растворителя и растворенного вещества. . Если молекулы одного компонента сильнее притягиваются друг к другу, чем к молекулам другого компонента, то парциальные давления пара над смесью будут больше вычисленных. Если же частицы разных компонентов притягиваются друг к другу сильнее, чем частицы одного и того же компонента, то парциальные давления будут меньше вычисленных. В реальных растворах взаимодействия между однородными и разнородными молекулами различны. Если раствор образуется из частных компонентов А и В, то изменение потенциальной энергии при образовании раствора равно: (U=[pic], где UA-A, UB-B и UA-B - средние потенциальные энергии взаимодействия между однородными и разнородными молекулами соответственно, если (U=0, то раствор идеальный. Идеальные растворы при всех концентрациях и температурах подчиняются закону Рауля.
Активность и коэффициент активности.
При рассмотрении термодинамических свойств растворов принято пользоваться отношением [pic] Эта величина называется активностью i в растворе. Согласно уравнению [pic]отношение[pic] равно мольной концентрации данного компонента в растворе. Активность представляет собой вспомогательную расчетную термодинамическую функцию, которая характеризует степень связанности молекул компонента. При образовании данным компонентом в растворе каких- нибудь соединений его активность становится меньше и, наоборот, активность возрастает при уменьшении степени ассоциации компонента. Активность дает возможность судить об отклонении свойств данного компонента в том или ином растворе от свойств в простейшем растворе при той же мольной концентрации компонента. Активность зависит от вида и концентрации каждого из других компонентов .раствора. Она зависит также от температуры и от давления, но не зависит от способа выражения концентрации. Химический потенциал данного компонента в растворе связывается с активностью соотношением: [pic] Вместо активности нередко пользуются величиной коэффициента активности, (. Он равен отношению активности к концентрации (=[pic]. Коэффициент активности характеризует степень отклонения свойств рассматриваемого компонента в данном растворе от его свойств в соответствующем простейшем растворе. В сильно разбавленном растворе коэффициент активности равен единице. Чем более концентрирован раствор, тем больше отличается активность от концентрации.
Кристаллизация растворов.
Раствор, в отличие от чистой жидкости не отвердевает целиком при одной температуре. Кристаллы начинают выделяться при какой-то одной температуре. По мере понижения температуры количество их растет, пока весь раствор не отвердеет. Температурой начала кристаллизации называют температуру, при которой при охлаждении раствора начинается образование кристаллов. Не рассматривая здесь систем, в которых происходит образование твердых растворов, можно сказать, что температурой начала кристаллизации называется температура, при которой кристаллы растворителя находятся в равновесии с раствором данного вещества. Опыт показывает, что разбавленный раствор замерзает при температуре более низкой, чем чистый растворитель. Такое изменение температуры можно рассматривать как общее правило. Для характеристики температуры замерзания раствора введена величина “понижение температуры замерзания” (T 3. Она определена как разность между температурами замерзания чистого растворителя и раствора: (T3=[pic]. Понижение температуры замерзания пропорционально концентрации растворенного вещества в растворе. (T=K*c Коэффициент K называется молярным понижением температуры замерзания или криоскопической постоянной. К = [pic], где [pic]-температура замерзания растворителя lпл – удельная теплота плавления
Кипение растворов.
Если рассматривать растворы нелетучего вещества в летучих растворителях, то температура кипения таких растворов всегда выше температуры кипения чистого растворителя. Повышение температуры кипения будет тем больше, чем выше концентрация раствора. И для разбавленных растворов его можно считать пропорциональным концентрации. Для растворов температуры кипения являются более высокими, чем для чистого растворителя и разность между ними (Ткип = T кип - [pic] будет тем большей, чем выше концентрация растворов. Повышение температуры кипения пропорционально концентрации раствора. (T кип = Е*с Коэффициент пропорциональности Е является постоянной. Он называется молярным повышение температуры кипения или эбуллиоскопической постоянной. Е = [pic], где [pic] - температура кипения чистого растворителя lисп – удельная теплота его испарения
Осмос.
Раствор представляет собой гомогенную систему. Все частицы растворенного вещества находятся в беспорядочном тепловом движении равномерно распределены по всему объему раствора. Если поместить в сосуд концентрированный раствор какого-либо вещества, например, сахара, а поверх его осторожно налить слой более разбавленного раствора сахара, то вначале сахар и вода будут распределены в объеме раствора неравномерно. Но через некоторое время молекулы сахара и воды вновь равномерно распределяться по всему объему жидкости. Это происходит потому, что молекулы сахара, беспорядочно двигаясь проникают как из концентрированного раствора в разбавленный, и в обратном направлении, но при этом в течение любого промежутка времени из концентрированного раствора переходит в разбавленный раствор больше молекул, чем из разбавленного в концентрированный. Точно так же ведут себя и молекулы воды. Таким образом возникает направленное движение молекул сахара из концентрированного раствора в разбавленный, а воды – из разбавленного раствора в концентрированный. Такой самопроизвольный процесс перемещения вещества, приводящий к выравниванию его концентрации, называется диффузией. Когда концентрация раствора во всем его объеме выравнивается, диффузия прекращается. В рассмотренном случае частицы растворителя и растворенного вещества диффундируют в противоположных направлениях. Такой процесс называется двусторонней или встречной диффузией. Но возможен и другой случай, когда между веществами поместить перегородку, через которую растворитель проходить может, а растворенное вещество нет. Односторонняя диффузия вещества через такую перегородку называется осмосом. Возьмем два сосуда, расположенные один в другом . Пусть дно внутреннего сосуда сделано из полунепроницаемого материала. Наружный сосуд наполним водой, а во внутренний поместим водный раствор, например сахара в воде. Рассмотрим процесс, происходящий в приборе, состоящем из этих двух сосудов. Из наружного сосуда вода будет проходить во внутренний и подниматься по трубке, соединенной с внутренним сосудом. При этом повышается гидростатическое давление, под которым находится раствор во внутреннем сосуде. Наконец при некоторой высоте столба жидкости ее подъем прекратиться. Давление, которое отвечает такому равновесию может служить количественной характеристикой осмоса и называется осмотическим давлением. Таким образом осмотическое давление равно тому давлению, которое нужно приложить к раствору, чтобы привести его в равновесие с чистым растворителем, отделенным от него полунепроницаемой перегородкой. Описанный метод дает возможность измерять осмотическое давление. Опытные данные позволяют установить, что в достаточно разбавленных растворах осмотическое давление ( прямо пропорционально концентрации растворенного вещества: (=KС Сравнение осмотического давления одних и тех же растворов при разных температурах приводит к выводу, что осмотическое давление изменяется прямопропорционально абсолютной температуре. (=СRT, где R – универсальная газовая постоянная. Это уравнение по форме совпадает с уравнением состояния идеального газа, так как связь между концентрацией и объемом выражается, как С=[pic].Таким образом осмотическое давление равно тому газовому давлению, которым обладало растворенное вещество, если бы, находясь в газообразном состоянии при той же температуре, оно занимало бы весь объем, который занимает раствор. Этот закон называется законом Вант-Гоффа
Список литературы
1. В.А. Киреев “Курс физической химии”,М. 1975 2. Н.Л.Глинка “Общая химия”, М. 2000 3. М.К.Дей, Д.Селбин “Теоретическая неорганическая химия”, М. 1971 4. Л.А.Николаев “Общая и неорганическая химия” М. 1974 5. К.С.Краснов “Физическая химия” М. 2001
----------------------- [pic] зависимость растворимости газов от температуры
. [pic] зависимость растворимости жидкостей от температуры
а) в) [pic][pic] Двукомпонентная система с а)отрицательным отклонением от закона Рауля в)положительным отклонением от закона Рауля
Реферат на тему: Жидкостное химическое травление
Калужский Филиал Московского Государственного Технического Университета им. Н. Э. Баумана
Отчет по технологической практике на тему:
“ Жидкостное химическое травление “
студент: Тимофеев А. Ю. руководитель: Парамонов В. В.
1996 г. г. Калуга. Содержание. стр. 1. Введение. 3 1.1. Термодинамика травления. 5 1.2. Общие принципы кинетики травления. 8 1.3. Феноменологический механизм травления. 9 2. Жидкостное травление. 11 2.1. Травление SiO2. 11 2.2. Травление кремния. 14 2.3. Травление многослойных структур. 19 2.4. Травление алюминия. 20 2.5. Травители для алюминия. 21 2.6. Электрохимическое травление. 23 3. Практические аспекты жидкостного химического 23 травления. 3.1. Другие характеристики травления. 24 4. Заключение. 25 5. Список литературы. 26 Введение.
Травление используется для селективной (химической) прорисовки диффузионных масок, формирования изолирующих или проводящих областей, в процессе которого вещество в области, подвергаемой травлению, химически преобразуется в растворимое или летучее соединение. В литографии травление применяется в основном для формирования диффузионных масок в слое термически окисленного кремния или для удаления материала через окна в диэлектрике при изготовлении металлических контактов. Металлическая разводка формируется путем селективного удаления промежутков (обращения изображения); фотошаблоны также изготавливаются травлением металлических пленок. Задача инженера-технолога состоит в том, чтобы обеспечить перенос изображения с резистной маски в подложку с минимальным отклонением размера (Е) и допуском ((Т) (см. рис. 1). Из рисунка видно, что суммарное изменение размера при литографии Е обусловлено искажением изображения в резистной маске ((0.1 мкм), уходом размера в резисте ((0.5 мкм) и уходом окончательного размера в процессе травления (1.0 мкм с допуском в (1.0 мкм.
[pic]
Рис. 1. Изменение размеров при переносе изображения из резиста в подложку с помощью изотропного травления. В зависимости от кристалличности пленки и целостности резиста (отсутствие отслоений при жидкостном и эрозии при плазменном травлении) уход размера может достигать толщины пленки D и даже превышать ее. Изотропное жидкостное травление, для которого характерно большое боковое подтравливание (L), пришлось заменить газофазным анизотропным травлением, для которого D/L((1 (рис. 2). Изотропное травление происходит неупорядоченно, с одинаковой скоростью по всем пространственным направлениям - L и D. Анизотропное травление проявляется при некоторых отклонениях от изотропного процесса. Желательно, чтобы глубина травления (D) была много больше величины бокового подтравливания (L). Поскольку травление в вертикальном направлении при достижении глубины D прекращается, перетравливание определяется только скоростью удаления материала в боковом направлении. Степень анизотропии можно определить как отношение L/D, и ее величина зависит от многих физических параметров. Жидкостное травление определяется в основном статическими характеристиками типа адгезии и степени задубленности резиста, состава травителя и т.п. При сухом травлении степень анизотропии во многом зависит от таких динамических параметров, как мощность разряда, давление и скорость эрозии резиста. Величина бокового подтравливания в случае жидкостного травления зависит от предшествующих стадий обработки - подготовки поверхности и термозадубливания.
[pic] Рис. 2. Анизотропное (слева) и изотропное (справа) травление. R-резист, S-полложка. Используя жидкостное травление или недавно разработанный и боле предпочтительный метод плазменного сухого травления, можно формировать различные профили в пленках. Жидкие травители дают изотропные или скошенные профили . Скошенный профиль края лучше подходит для последующего нанесения полости металла поперек такой ступеньки. [pic] Ширина линии в скомпенсированной маске М, мкм Рис. 3. Связь компенсации (уменьшение размеров окон в маске), необходимый при изотропном и анизотропном (D/L>2) травлении.
Для компенсации подтрава при изотропном жидкостном травлении размеры элемента на фотошаблоне следует уменьшать. На рис. 3 показана компенсация размера окон в шаблоне для разных степеней анизотропии травления. Для обычного изотропного травления D/L равно 1 (без разрушения резиста и при хорошей адгезии). Для того чтобы ширина полосы была равна (е, размер перенесенного в резист изображения (r должен быть меньше на удвоенную величину бокового подтрава (L): (r=(е-2L. (1)
[pic]
Рис. 4. Сравнение жидкостного (W) и плазменного (Р) травления.В обоих случаях травление производится через маску Si3N4 толщиной 0.25 мкм.
для получения 1-мкм линии при умеренно анизотропном травлении (D/L=3) изображение в резисте следует делать на 0.2 мкм меньше 1 мкм, а ширина элемента на шаблоне (М) должна быть увеличена примерно на 0.05-0.1 мкм для компенсации ухода размера при формировании резистной маски. Если же D/L=10, то полоса шириной 1 мкм может быть подтравлена через резистное окно шириной 0.7 мкм. разница в характеристиках компенсации размера изображения в резисте для сухого и жидкостного травления Si3N4 ясно видна на рис. 4.
Термодинамика травления. С точки зрения химии процесс травления можно представить схемой твердая фаза+травитель(продукты; при этом к твердой фазе относят кремний, его оксиды и нитриды и многие металлы. Для межсоединений внутри кристалла обычно применяют Al и его сплавы с Si и Cu, причем основным материалом для первого уровня металлизации является Al (табл. 1). Слои оксидов кремния можно выращивать термически, наносить химическим способом или распылением, можно также легировать их фосфором или бором. Металлы используются в виде чистых или пассивированных пленок, сплавов, многослойных структур и интерметаллидов. Поскольку кремний существует в виде монокристаллических или поликристаллических пленок, его структура, как и структура других кристаллических материалов, имеет и ближний и дальний порядок. Поскольку травление переводит упорядоченные структуры в неупорядоченные, термодинамические соображения о поведении свободной энергии (F системы должны учитывать изменения как энтропии +(S, так и энтальпии (Н (теплоты растворения или испарения) (F=(Н-Т(S. (2) Например, реакция травления аморфного оксида кремния является эндотермической, (Н=+11 ккал/моль:
SiO2(тв.)+6HF(ж.)(Н2SiF6+2H2O. (3)
Таблица 1. Материалы полупроводниковой электроники. | | | |Проводники |Ag, Al, Au, Cr, Cu, Mo, Ni, Pb, Pt, Ta, | | |Ti,W | |Полупроводники |Si, Ge, GaAs | |Диэлектрики |SiO2, Si3N4, резист, полиимид |
Преодоление короткодействующих сил в амфорном твердом теле сопровождается ростом энтропии. Небольшие дефекты, такие, как напряжение, деформация, примесные уровни, также оказывают влияние на скорость травления. В кристаллическом кремнии скорость травления плоскостей с малыми индексами Миллера определяется числом свободных связей и кристаллографической ориентацией (табл. 2).
Таблица 2. Влияние ориентации на травление кремния. |Кристаллографическая |Относительное число |Относительная скорость| |плоскость |свободных связей |травления | | | | | |(111) |0.58 |0.62 | |(110) |0.71 |0.89 | |(100) |1.00 |1.00 |
Переход металла или кремния в растворимое состояние включает в себя ионизацию металла (определяемую потенциалом ионизации) и перенос электрона к соответствующему восстановителю с высоким сродством к электрону М(тв.) (Мn+(ж.)+ne. (4) Реакция эта трехстадийная: М(тв.) (М(газ) сублимация, (5) М(газ) ( Мn+(газ)+ne ионизация, (6) Мn+(газ)+Н2О ( Мn+(ж.) гидратация. (7) Изменение энтальпии при сублимации и ионизации положительно (эндотермические реакции), но гидратация экзотермична (отрицательное (Н). При газофазном травлении для распыления металла путем его сублимации кинетическая энергия частиц травителя (энергия травления) должна передаваться металлу из газовой фазы. При погружении металлического образца в раствор, содержащий его собственные ионы (уравнение 4), ионы металла переходят в раствор (рис. 5), и образец приобретает отрицательный заряд. Метал образует, таким образом, свой собственный анод. и ионы Мn+ притягиваются к нему, формируя двойной электрический слой (слой Гельмгольца). разность потенциалов в нем называется [pic] Рис. 5. Двойной слой Гельмгольца на границе металла в равновесии с ионами металла в жидкой фазе (М+) и анионами (Х-).
абсолютным электродным потенциалом. Стандартные окислительные и восстано- вительные потенциалы можно найти в литературе по электрохимии. На катоде происходит уравновешиваю-щее окисление, и катодную реакцию в растворе можно записать следующим образом: ne+ Xn- (Xn. (8) итоговое приращение свобод-ной энергии, (F, составляет (F=-nФ(Е, (9) где (Е есть разность анодного и катодного потенциалов, а Ф-число Фарадея. Величина изменения свободной энергии зависит от: 1) чистоты металла, его кристаллической структуры, наличия напряжений, метода осаждения и состава примесей; 2) активности ионов металла в растворе; 3) ионной силы электролита; 4) температуры; 5) состава растворителя. При травлении диэлектриков переноса электронов не происходит, и реакции в этом случае имеют кислотно-основный характер:
SiO2+6HF (H2SiF6+2H2O, (10) SiO2+CF4(газ) (SiF4+CO2. (11) Si(O-связь заменяется связью Si(F. Поскольку энергии связей Si(O и Si(F близки, знак изменения энтропии определяет, пройдет реакция или нет. Общие принципы кинетики травления.
Гетерогенные твердофазные реакции затрагивают различные разделы химии, механики и физики. Типичный процесс включает в себя следующую последовательность реакций: 1) перенос реагента; 2) адсорбция реагента (Нads; 3) реакция на поверхности (F; 4) десорбция продуктов (Нvap; 5) перенос продуктов. Самый медленный этап определяет скорость реакции. В реакциях низшего порядка Скорость=k нулевой порядок, (12) Скорость=kE первый порядок. (13) скорость зависит от концентрации травителя (Е) только в случае реакции первого порядка. При выборе той или иной реакции травления стараются остановиться на процессе с наименьшим количеством параметров и преимущественно линейными скоростями травления. Желательно также иметь возможность изменения анизотропии регулированием физических параметров и высокую селективность процесса (т. е. отсутствие воздействия травителя на резист или слой, находящийся под стравливаемой пленкой). В реакциях нулевого порядка слабое обеднение травителя несущественно. Однако в реакциях первого порядка мы не имеем достаточного избытка травителя, и он может сильно истощиться при загрузке десяти или более пластин. В реакциях простого порядка зависимость толщины стравленной пленки (или логарифма толщины) от времени линейная. Поэтому окончание реакции может контролироваться и точно определяться экстраполяцией. Рассмотрим механизм переноса для двух основных типов реакций - диффузионно- контролируемых и ограниченных скоростью реакции. Вообще говоря, в процессе травления могут быть вовлечены все три агрегатных состояния вещества: 1) твердая фаза ( скрытая химическая энергия и физическая структура пленки; 2) жидкая фаза ( перенос ионов в жидком диэлектрике, обладающем высокой вязкостью; 3) газообразная фаза ( хемосорбция, рекомбинация, ионизация и средний свободный пробег газовых частиц при пониженном давлении. Феноменологический механизм травления. Переход от твердой фазы к жидкой или газообразной твердая пленка+ травитель (k( продукты (14) зависит от диффузии взаимодействующих веществ SiO2(тв.)+6HF(жидк.) ( H2SiF6+2H2O, (15) SiO2+CF4 ( SiF4+CO2. (16) Пусть r есть соотношение молярных объемов r=(m/d)/(M/D), (17) где m и М - молекулярные веса продукта и травителя, а d и D - соответствующие плотности. Тогда, если r>1 (как при травлении стекла), продукт не покрывает полностью твердую поверхность (рис.6). Поскольку продукт не препятствует проникновению травителя, скорость травления определяется скоростью реакции травителя с твердой поверхностью [k в уравнении 14]. Энергии активации при этом порядка 7 - 20 ккал/моль. В случае r1, уравнение 17]; 2) химический процесс на поверхности настолько быстр, что конвекция и диффузия не могут обеспечивать достаточной концентрации реагента у поверхности, r>1. Наблюдаемая скорость является скоростью переноса (диффузии) к поверхности; 3) скорость диффузии и химической реакции одного порядка (потребление реагента в реакции соизмеримо с его переносом в результате диффузии), однако концентрация реагента на поверхности не снижается на столько , чтобы сдерживать реакцию. Простейший пример уравнения для скорости - процесс типа (1) dM/dt= k1SC, (24) где S - площадь поверхности, С - концентрация травителя. Здесь предполагается, что скорость имеет первый порядок по отношению к концентрации травителя, и не учитывается промежуточное поглощение и влияние неровностей поверхности. В реакциях типа (2) необходимо учитывать эффективную толщину (() слоя градиента концентрации (рис. 8) и применять закон Фика [уравнения 18 и 19]: dM/dt=DSC/(=k2SC. (25) В процессах типа (3) предполагается, что концентрация травителя на поверхности равна Сs (s-(surface(): dM/dt=k1SCs=k2S(C-Cs). (26) Если разность эффективных площадей учитывается в k1, то dM/dt=k1k2SC/(k1+k2)=k3SC (27) Уравнения (24), (25), (26) формально представляют одно и то же уравнение, и поэтому необходимо располагать экспериментальным критерием для различения трех описанных типов травления. Некоторые отличия приводятся ниже. Характерными признаками реакции, контролируемой диффузией, являются: 1) Энергия активации зависит от вязкости и равна 1-6 ккал/моль [уравнение 23]. 2) Скорость реакции увеличивается при перемешивании реагента. Исключение составляет эффект автокатолиза NO при травлении кремния в HNO3. Продукты этой реакции (NO) способствуют ее же развитию. Интенсивное перемешивание приводит к уменьшению скорости реакции. 3) Все материалы независимо от ориентации кристаллических плоскостей травятся с одинаковой скоростью. 4) Энергия активации при перемешивании растет. Исключением является травление кремния в HNO3 ((H=100 ккал/моль), в ходе которого значительное количество тепла, выделяемое в результате экзотермической реакции, приводит к увеличению скорости диффузии и скорости травления. Перемешивание в этом случае привело бы к уменьшению скорости травления из-за диссипации тепла. Характерными признаками процессов, контролируемых скоростью химической реакции [уравнение 24], являются: 1) зависимость скорости реакции от концентрации травителя; 2) отсутствие зависимости скорости от перемешивания; 3) энергия активации составляет 8-20 ккал/моль.
Жидкостное травление. При жидкостном травлении металлов происходят окислительно-восстановительные реакции, а в случае неорганических оксидов - реакции замещения (кислотно- основные).
Травление SiO2. Амфорный или плавленый кварц,- это материал, в котором каждый атом кремния имеет тетраэдрическое окружение из четырех атомов кислорода. В стеклообразных материалах могут сосуществовать как кристаллическая, так и аморфная фазы. Напыленный кварц представляет собой аморфный SiO2 из тэтраэдров SiO4. В процессе реакции травления элементарный фтор может легко замещать атом О в SiO2, так как фтор обладает меньшим ионным радиусом (0.14 нм), чем Si(O (16 нм). Энергия связи Si(F в 1.5 раза превышает энергию связи Si(O. Ниже перечислены основные достоинства аморфных пленок SiO2, применяемых в полупроводниковой электронике: 1) хорошая диэлектрическая изоляция; 2) барьер для ионной диффузии и имплантации; 3) низкие внутренние напряжения; 4) высокая степень структурного совершенства и однородности пленки; 5) использование в качестве конформных покрытий, включая и покрытия ступенек; 6) высокая чистота, однородная плотность и отсутствие сквозных пор. Аморфный SiO2 различных типов получают методами химического осаждения из паровой фазы, распыления, окисления в парах воды. Из-за внутренних напряжений оксиды, осажденные различными способами, имеют различия в строении ближнего порядка, которые влияют на скорость травления (табл. 3).
Таблица 3. Скорости травления SiO2 в буферном растворе (7;1) HF. | |Относительная скорость | |Метод получения оксида |травления (мкм/мин) | | | | |Термоокисление в парах воды1) |1.0 | |Анодный рост |8.5 | |Пиролитический |3-10 | |Распыление |0.5 | |Легированный оксид |3-5 |
1) Примерно 0.1 мкм/мин (20оС).
Травление SiO2 в водном растворе HF через фоторезистную маску протекает изотропно благодаря эффекту подтравливания, который усиливается частичным отслаиванием резиста. Почти анизотропные вертикальные профили могут быть получены при использовании твердой и свободной от напряжений масок из Si3N4 (рис. 9). Косые кромки получают при использовании 30:1 (по весу) раствора NH4F в HF. Ухудшение адгезии резиста или, наоборот, его хорошее сцепление (Si3N4) с поверхностью SiO2 может привести к возникновению трех различных профилей травления. Химия травления SiO2 включает нуклеофильное воздействие фторидных групп на связи Si(O. В буферном растворе HF (7 частей 40- процентной NH4F к одной части концентрированной HF) доминируют два типа частиц:
[pic] Рис. 9. профили полученные при использовании жидкостного травителя 6:1 NH4/HF с различными масками: а-маска Si3N4; б-фоторезистная маска. В случае (в) травление в смеси 30:1 NH4F/HF проводилось через маску фоторезиста.
HF (k1( H+ + F-, k1=10-3, (28) HF+F- (k2( HF-2, k2=10-1. (29) Основной частицей в буферном растворе HF является HF-2. Эта система чувствительна к перемешиванию и, скорее всего, является диффузионно- контролируемой. На рис. 10 показана линейная зависимость скорости растворения от концентрации HF-2 и HF. Таким образом, скорость уменьшения толщины SiO2 равна d(SiO2)/dt=A(HF)+B(HF-2)+C, (30) где А, В и С - постоянные, при 250С равные 2, 5 и 9.7 соответственно. [pic] Рис. 10. Линейность скорости растворения SiO2 при 23оС. Неразбавленный раствор HF диссоциирует только до 10-3, и скорость травления в нем примерно в 4 раза меньше (0.925 мкм/мин). Неразбавленный раствор HF является также хорошо проникающим веществом, и поэтому он легко диффундирует сквозь резистную пленку, создавая в ней каналы и случайные отслоения от подложки. Можно представить, что атака бифторидным ионом поверхности диоксида кремния включает промежуточное состояние
[pic] Во взаимодействии HF с оксидом кремния участвуют, вероятно, поверхностные состоянии
[pic][pic][pic] В конце концов фтор замещает кислород. Атомы водорода присоединяются к атому кислорода на поверхности SiO2, а в координационную сферу SiF4 включаются два или более ионов фтора, так что в растворе образуется SiF62-. Окончательно реакция травления может быть представлена как
6HF + SiO2 ( H2SiF6 + 2H2O (31) Обнаружено, что при добавлении NH4F и H2F6 к буферному раствору HF скорость травления увеличивается благодаря образованию HF2-. При этом накапливание H2SiF6 конкурирует с процессом образования осадка (NH4)2SiF6 :
H2SiF6 + NH4F ( (NH4)2SiF6 + HF (32) Добавление более сильных нуклеофильных веществ (NH4Cl, -Br, -I) ведет к увеличению скорости (табл. 4), что свидетельствует о развитии процесса через нуклеофильное смещение.
Таблица 4. Влияние галогена на скорость травления SiO2. |Буферный ион |Скорость травления (нм/сек) | | | | |F- |1.0 | |Cl- |2.0 | |Br- |2.3 | |I- |3.3 |
Травление кремния. Травление кремния включает стадию окисления Si + [O] ( SiO2 + 14ккал/моль (33) и последующее травление SiO2 : 6HF + SiO2 ( H2SiF6 + H2O - 11ккал/моль (31) В травителе HF/HNO3 происходит реакция Si+2HNO3+6HF ( H2SiF6+2HNO3+ 2H2O+125ккал/моль (34) Для растворения каждого атома Si требуется две молекулы HNO3 и шесть молекул HF. Если реакция контролируется диффузией, то максимальная скорость травления должна достигаться при молярном соотношении HNO3 и HF, равном 1:3. Анализ зависимости Аррениуса для травления Si в HF/HNO3 обнаруживает излом (рис. 11), соответствующий изменению вида процесса от диффузионно- контролируемого к контролируемому скоростью реакции. Энергия активации диффузионно-контролируемого травления (6 ккал/моль) определяется диффузией HF через слой продуктов реакции. Значение этой энергии при травлении, контролируемом скоростью реакции (4 ккал/моль), определяется окислением кремния. Для диффузионно-контролируемого процесса произведение вязкость ( скорость постоянно [уравнение (21)]. Для управления вязкостью добавляется ледяная уксусная кислота (рис.12). [pic]Рис. 11. Зависимость скорости травления dM/dt от величины 1000/Т при травлении Si в HNO3/HF. [pic] Рис. 12. Зависимость произведения вязкости на скорость травления (((dM/dt) от температуры ля травления Si при использовании ледяной уксусной кислоты в качестве загустителя.
При изотропном травлении кремния используются маски из нетравящихся металлов Si3N4 или SiO2 (иногда для неглубокого травления). Резист используется редко, так как HF(HNO3 быстро проникает через пленку. Для травления кремния использовались также щелочные травители
Si + 2OH- + H2O ( SiO2 + 2H2 (35) Этилендиамин, гидразин и O | |