GeoSELECT.ru



Компьютеры / Реферат: Алгоритмы сортировки (Компьютеры)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Алгоритмы сортировки (Компьютеры)




Алгоритмы сортировки
Проблема упорядочивания данных с практической точки зрения:
достоинства и недостатки пяти различных методов сортировки.

Сортировка применяется во всех без исключения областях программирования,
будь то базы данных или математические программы.
Практически каждый алгоритм сортировки можно разбить на три части:
- сравнение, определяющее упорядоченность пары элементов;
- перестановку, меняющую местами пару элементов;
- собственно сортирующий алгоритм, который осуществляет сравнение и
перестановку элементов до тех пор, сока все элементы множества не будут
упорядочены.
Подобными свойствами обладают и те пять алгоритмов сортировки, которые
рассмотрены ниже. Они отобраны из множества алгоритмов, потому что,
во-первых, наиболее часто используются, а во-вторых, потому что большинство
остальных алгоритмов является различными модификациями описанных здесь.

Метод пузырька.
( метод назван также обменной сортировкой с выбором) .
Идея этого метода отражена в его названии. Самые легкие элементы массива
"всплывают" наверх, самые "тяжелые" - тонут. Алгоритмически это можно
реализовать следующим образом. Мы будем просматривать весь массив "снизу
вверх" и менять стоящие рядом элементы в там случае, если "нижний" элемент
меньше, чем "верхний". Таким образом, мы вытолкнем наверх самый "легкий”
элемент всего массива. Теперь повторим всю оперно для оставшихся
неотсортироваными N-1 элементов (т.е. для тех, которые лежат "ниже"
первого. Как видно, алгоритм достаточно прост, но, как иногда замечают, он
является непревзойденным в своей неэффективности. Немного более
эффективным, но таким наглядным является второй метод.

Сортировка выбором
На этот раз при просмотре мaccива мы будем искать наименьший элемент,
Сравнивая его с первым. Если такой элемент найден, поменяем его местами с
первым. Затем повторим эту операцию, но начнем не с первого элемента, а со
второго. И будем продолжать подобным образом, пока не рассортируем весь
массив.

Метод Шелла
Этот метод был предложен автором Donald Lewis Shеll в 1959 г. Основная идея
этого алгоритма заключается в том, чтобы в начале ycтpанить массовый
беспорядок в массиве, сравнивая далеко стоящие друг от друга элементы. Как
видно, интервал между сравниваемыми элементами (gap) постепенно уменьшается
до единицы. Это означает, что на поздних стадиях сортировка сводится просто
к перестановкам соседних элементов (если, конечно, такие перестановки
являются необходимыми).

Метод Хoopа
Этот метод, называемый также быстрой сортировкой(QuickSort), был
Разработан в 1962 г. (его разработал Charles Antony Richard Hoare).
Суть метода заключается в том, чтобы найти такой элемент множества,
подлежащего сортировке, который разобьет его на два подмножества: те
элементы, что меньше делящего элемента, и те, что не меньше его. Эту идею
можно реализовать многими способами.





Реферат на тему: Анализ и оценка аппаратных средств современных ПЭВМ

Государственный комитет по связи и информатике

МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ
И ИНФОРМАТИКИ

Кафедра ВТ и УС



Курсовая работа

по теме

Анализ и оценка аппаратных средств современных ПЭВМ



Выполнил:
Студент гр. А19301
Рыбалко С.О.

Проверил:
д.т.н. Козырева



Москва
1997


Введение


В наше время трудно представить себе, что без компьютеров можно
обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины
были доступны весьма ограниченному кругу специалистов, а их применение, как
правило, оставалось окутанным завесой секретности и мало известным широкой
публике. Однако в1971 г. произошло событие, которое в корне изменило
ситуацию и с фантастической скоростью превратило компьютер в повседневный
рабочий инструмент десятков миллионов людей. В том вне всякого сомнения
знаменательном году еще почти никому не известная фирма Intel из небольшого
американского городка с красивым названием Санта-Клара (шт. Калифорния),
выпустила первый микропроцессор. Именно ему мы обязаны появлением нового
класса вычислительных систем - персональных компьютеров, которыми теперь
пользуются, по существу, все, от учащихся начальных классов и бухгалтеров
до маститых ученых и инженеров. Этим машинам, не занимающим и половины
поверхности обычного письменного стола, покоряются все новые и новые классы
задач, которые ранее были доступны (а по экономическим соображениям часто и
недоступны - слишком дорого тогда стоило машинное время мэйнфреймов и мини-
ЭВМ) лишь системам, занимавшим не одну сотню квадратных метров. Наверное,
никогда прежде человек не имел в своих руках инструмента, обладающего столь
колоссальной мощью при столь микроскопических размерах.


Процессоры

Первый шаг
15 ноября 1971 г. можно считать началом новой эры в электронике. В
этот день компания приступила к поставкам первого в мире микропроцессора
Intel 4004 - именно такое обозначение получил первый прибор, послуживший
отправной точкой абсолютно новому классу полупроводниковых устройств.
Создав новый рынок и захватив на нем господствующие высоты, Intel тем
не менее стремилась расширить его границы, и за 25 лет процессоры проделали
поистине гигантский путь.
Рассмотрим типы процессоров, которые применяются в данное время:
80286
Процессор i80286 был анонсирован 1 февраля 1982 г. Архитектура и
характеристики чипа оказались весьма впечатляющими. Оставшись 16-разрядным
прибором, по производительности новый ЦП в 3—6 раз превзошел своего
предшественника (i8086) при тактовой частоте первой модификации 8 МГц.
Благодаря использованию многовыводного корпуса разработчики смогли
применить схему с раздельными шинами адресов и данных. 24 разряда адреса
позволили обращаться к физической памяти объемом до 16 Мбайт — такую же
емкость имели тогда и старшие модели большинства мэйнфреймов. Встроенная
система управления памятью и средства ее защиты открывали широкие
возможности использования МП в многозадачных средах. Кроме того, аппаратура
i80286 обеспечивала работу с виртуальной памятью объемом до 1 Гбайт.
Новый ЦП имел два режима работы - реальный и защищенный. В первом
случае он воспринимался как быстрый ЦП i8086 с несколько расширенной
системой команд и прекрасно подходил тем потребителям, для которых, помимо
скоростных характеристик, жизненно важным было сохранение существующего
задела ПО. Работа в защищенном режиме позволяла использовать преимущества
прибора в полном объеме, и прежде всего — большой объем основной памяти.
Первенец 32-разрядных систем
Первенец 32-разрядных систем i80386 был представлен 17 октября
1985 г. и имел все права на звание процессора для ЭВМ общего назначения.
Использование КМОП-технологии с проектными нормами 1 мкм и двумя
уровнями металлизации позволило разместить на кристалле 275 тыс.
транзисторов и реализовать полностью 32-разрядную архитектуру ЦП. 32
разряда адреса обеспечили адресацию физической памяти объемом до 4 Гбайт и
виртуальной памяти емкостью до 64 Тбайт. Помимо работы с виртуальной
памятью допускались операции с памятью, имевшей страничную организацию.
Предварительная выборка команд, буфер на 16 инструкций, конвейер команд и
аппаратная реализация функций преобразования адреса значительно уменьшили
среднее время выполнения команды. Благодаря этим архитектурным
особенностям, процессор мог выполнять 3 - 4 млн. команд в секунду, что
примерно в 6 - 8 раз превышало аналогичный показатель для МП i8086.
Безусловно, новый прибор остался совместимым со своими предшественниками на
уровне объектных кодов.
Особый интерес представляли три режима работы кристалла ( реальный,
защищенный и режим виртуального МП i8086. В первом обеспечивалась
совместимость на уровне объектных кодов с устройствами i8086 и i80286,
работающими в реальном режиме. При этом архитектура i80386 была почти
идентична архитектуре 86-го процессора, для программиста же он вообще
представлялся как ЦП i8086, выполняющий соответствующие программы с большей
скоростью и обладающий расширенной системой команд и регистрами. Благодаря
этим качествам 32-разрядного продукта компания сохранила прежних клиентов,
которые хотели модернизировать свои системы, не отказываясь от имевшегося
задела в области программного обеспечения, и привлекла тех, кому изначально
требовалась высокая скорость обработки информации.
Одно из основных ограничении реального режима было связано с
предельным объемом адресуемой памяти, равным 1 Мбайт. От него свободен
защищенный режим, позволяющий воспользоваться всеми преимуществами
архитектуры нового ЦП. Размер адресного пространства в этом случае
увеличивался до 4 Гбайт, а объем поддерживаемых программ до 64 Тбайт.
Системы защищенного режима обладали более высоким быстродействием и
возможностями организации истинной многозадачности.
Наконец, режим виртуального МП открывал возможность одновременного
исполнения ОС и прикладных программ. написанных для МП i8086, i80286
и80386. Поскольку объем памяти, адресуемой 386-м процессором, не ограничен
значением 1 Мбайт, он позволял формировать несколько виртуальных сред
i8086.
10 апреля 1989 г. корпорация Intel объявила о начале выпуска 32
разрядного прибора второго поколения - i80486, ставшего после устройств
i8080 и !8086 еще одним долгожителем.
Pentium
Стремительное усложнение программного обеспечения и постоянное
расширение сферы применения компьютеров настоятельно требовали
существенного роста вычислительной мощи центральных процессоров ПК. Ко
всему прочему на пятки стали наступать и RISC-процессоры. Хотя в конце 80-х
годов некоторые эксперты предсказывали близкий конец кристаллов СISC,
корпорация Intel вполне справедливо посчитала, что до этого еще далеко и в
микропроцессорах использованы не все возможности СISC-архитектуры. Кроме
того, фирме вряд ли простили бы отказ от программной совместимости с
предшествующими моделями - стоимость накопленного системного и прикладного
ПО уже измерялась в миллиардах долларов.
Как это случалось не раз, проработки нового процессора начались, когда
проект создания 486-го МП вступил в заключительную стадию. В основу
продукта была положена суперскалярная архитектура (еще один атрибут из мира
мэйнфреймов), которая и дала возможность получить пятикратное повышение
производительности по сравнению с моделью 486DХ. Высокая скорость
выполнения команд достигалась благодаря двум 5-ступенчатым конвейерам,
позволявшим одновременно исполнять несколько инструкций. Для постоянной
загрузки обоих конвейеров из кэш’а требуется широкая полоса пропускания .
Совмещенный буфер команд и данных обеспечить ее не мог, и разработчики
воспользовались решением из арсенала RISC-процессоров, оснастив Pentium
раздельными буферами команд и данных. При этом обмен информацией с памятью
через кэш данных осуществлялся совершенно независимо от процессорного ядра,
а буфер инструкций был связан с ним через высокоскоростную 256-разрядную
внутреннюю шину. Несмотря на то что новый кристалл был спроектирован как 32-
разрядный, для связи с остальными компонентами системы использовалась
внешняя 64-разрядная шина данных с максимальной пропускной способностью 528
Мбайт/с. Еще одной «изюминкой» архитектуры, позаимствованной у
представителей универсальных ЭВМ стала схема предсказания переходов.
По скорости выполнения команд с плавающей точкой Pentium в пять - семь
раз превзошел процессор 486DX2/50 и почти на порядок - микросхему 486DX/33.
Pentium Pro
27 марта 1995 г. Intel представила микропроцессор шестого поколения,
получивший название Pentium Pro. Стремление выжать из CISC-архитектуры
практически все, на что она способна, заставило разработчиков этого
продукта пользоваться почти всеми техническими решениями, которые ранее
применялись в супер ЭВМ и мэйнфреймах (благо, достигнутая степень
интеграции это уже позволяла). Прежде всего речь идет об использовании
механизма динамического разделения порядка выполнения команд нескольких
многоступенчатых конвейеров вместо двух 5-ступенчатых конвейеров,
характерных для Pentium. Новый ЦП имеет их три, в каждом из которых 14
ступеней. Подобный многофазный конвейер позволил обеспечить высокую
тактовую частоту процессора (133 МГц в первой модели). Для осуществления
постоянной загрузки конвейера необходимы высокоэффективный кэш команд и
высококачественная схема предсказания переходов. Поэтому в отличие от
своего предшественника, имевшего двухвходовой ассоциативный кэш инструкций,
Pentium Pro обладает более эффективным четырехвходовым кэш’ем, а также
схемой предсказания ветвлений на 512 входов. Кроме того, для повышения
производительности была применена буферная память второго уровня емкостью
256 Кбайт, расположенная в отдельном чипе и смонтированная в том же
корпусе, что и процессор. Кристалл кэш’а связан с процессором собственной
синхронной 64-разрядной шиной, работающей на тактовой частоте процессора .
Технические характеристики нового ЦП обеспечили ему устойчивый сбыт в
секторе высокопроизводительных серверов и рабочих станций, на долю которого
приходится пока наибольший объем продаж кристалла. Что касается
персональных компьютеров, то здесь распространение Pentium Pro пока
сдерживается относительно высокой стоимостью и недостаточным объемом
прикладного ПО, в полной мере использующего все преимущества процессора.

Материнские платы


Почти все современные платы используют шину PCI и поддерживают
спецификацию PCI-2.0. Архитектура системных плат с шиной PCI за довольно
короткий промежуток времени претерпела существенные изменения, направленные
в конечном счете, на повышение производительности, — от РСI Bridge до РСI
Host Concurrent Bus, допускающей конкурентные циклы процессор-память и PCI-
память.


CHIPSET


Появление chipset Triton фирмы Intel, со значительно расширенными по
сравнению с ранними версиями возможностями по управлению шиной и применению
новых типов памяти, установило новый стандарт на производительные системы
на основе процессоров типа Pentium (90, 100, 120 MHz и т. д.).
Triton (82430FX PCIset) поддерживает:
. спецификацию РС1 РС12.0 (Triton VX— РС1 2.1); внешние тактовые
частоты 50/ 60/ 66 MHz;
. обмен по шине РС1 на частотах 25/30/33 MHz;
. 256 или 512 KB кэш-памяти второго уровня — pipeline burst SRAM,
асинхронную SRAM;
. от 4 до 128 MB EDO DRAM или FPM DRAM;
содержит встроенный Bus Master IDE контроллер на 4 устройства (режимы
PIO mode 4 и MultiWord DMA mode 2).
Естественно, что все новые модели chipset по своим возможностям
находятся примерно на уровне Triton и, кроме того, поддерживают и Pentium,
и процессоры К5 и М1 фирм AMD и Cyrix.
Chipset фирмы Acer Laboratory Inc. под названием Aladdin M1511/12/13
предназначен как для двухпроцессорных, так и однопроцессорных конфигураций.
Рассчитан на процессоры Pentium (от 60/66 MHz на 5V до 150 MHz, 2.5 V). В
однопроцессорной конфигурации можно применять также Cyrix М1 и AMD К5.
Предусмотрена поддержка pipeline burst SRAM и EDO DRAM. Имеется встроенный
контроллер Enhanced IDE.

Новые chipset для процессоров семейства 486, например ALI М 1489
фирмы, используют некоторые решения, разработанные для Pentium, в
частности, возможность применения памяти типа EDO DRAM, а также
поддерживают процессоры MISC фирмы Cyrix и Enhanced 486 фирмы AMD.


КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ И ВСТРОЕННЫЕ УСТРОЙСТВА


Во всех новых моделях системных плат для Pentium предусмотрена
поддержка процессоров не только на 90/100 MHz, но и 120, 133, 150 MHz, а в
некоторых —155, 167, 180 и 200 MHz. Разные значения напряжения питания,
требующиеся для разных моделей процессоров, обеспечиваются регуляторами
напряжения, как встроенными, так и в виде внешних модулей Voltage Regulator
Module — VRM (для них предусмотрены специальные разъемы). Практически
обязательными стали встроенные контроллеры Enhanced IDE на 4 устройства с
поддержкой режимов PIO mode 3, 4 и DMA Mode 2 (Bus Master IDE). На почти во
все системные платы, как для Pentium, так и для семейства 486, встраивают
также контроллеры флоппи-дисков и Enhanced Ports. Последовательные порты,
благодаря применению универсального асинхронного приемопередатчика UART
16550 с FIFO регистром, позволяют осуществлять безошибочный
высокоскоростной обмен данными. В некоторых случаях предусмотрена также
поддержка последовательного инфракрасного порта Infrared (IrDA).
Соответствующий модуль подключается через 5-штырьковый разъем. IrDA
обеспечивает обмен данными на расстоянии до одного метра со скоростью 115
kbps. Инфракрасными портами снабжаются в настоящее время многие переносные
устройства (notebook, laptop), а также принтеры.
Системные платы типа AII-In-One, в которых кроме встроенных
контроллеров и портов имеется также и графический адаптер и, зачастую,
звуковая плата, выпускаются в больших количествах, особенно фирмой Intel.
Применение плат All-In-One ограничивалось всегда необходимостью
использования специального корпуса типа slim, ultra slim, super slim и,
кроме того, небольшим числом слотов расширения и недостаточными
возможностями для дальнейшей модернизации. Тем не менее, тенденция
интегрировать, как можно больше устройств в системную плату прослеживается
вполне отчетливо (и не обязательно только в платах типа AII-In-One). Так,
например, встроенные SCSI-адаптеры применяются уже достаточно давно.


СИСТЕМНЫЕ ПЛАТЫ PENTIUM

Фирма ASUSTeK выпускает широкий набор системных плат под Pentium, как
в однопроцессорной, так и в двухпроцессорной конфигурации. Используются
chipset фирмы Intel (Triton, Neptune), а также фирмы SiS. Во всех платах
применены версии BIOS фирмы AWARD и SCSI BIOS фирмы NCR, реализованные на
основе Flash EPROM емкостью 1 M bit.
Пример: Модель РС1/1-Р55ТР4ХЕ рассчитана на процессоры Р54С с
тактовыми частотами 75, 90, 100, 120, 133, 150 MHz. В ней используется
chipset Intel Triton. Встроенный Bus Master Enhanced IDE контроллер
обеспечивает обмен данными в режимах Р10 mode 3 и 4 и DMA mode 2. Имеются
контроллеры флоппи-дисков и Enhanced Ports. BIOS фирмы Award поддерживает
режим Plug&Play. Плата снабжена дополнительным слотом MediaBus, который
может использоваться совместно со слотом РС1 для подключения
комбинированных адаптеров, например графического, совмещенного со звуковой
платой (шина MediaBus является неким аналогом шины ISA, только выведена на
другой разъем).


СИСТЕМНЫЕ ПЛАТЫ 486

Фирма ASUSTeK поставляет классические, очень тщательно
сконструированные модели плат для процессоров семейства. 486. Используется
chipset фирм Intel и SiS. Все платы поддерживают широкую номенклатуру
процессоров производства Intel (включая Pentium OverDrive Р24Т), AMD,
Cyrix, UMC. Хотя локальная шина VLB, разработанная в свое время специально
под процессоры семейства 486, сейчас активно вытесняется шиной РС1, на
рынке все еще имеется большое количество качественных графических и других
адаптеров, выполненных в этом конструктиве. Поэтому разъем под шину VLB
сохранен даже в системных платах, использующих РС1. Модель PVI-486SP3 (с
шинами PCI/VLB/ISA) собрана на chipset SiS 85С496&85С497, использует BIOS
фирмы Award и поддерживает до 512 KB кэш-памяти. Плата имеет полный набор
встроенных контроллеров. Модель PVI-486AP4 использует chipset Intel Green
PC 824.20EX PCIset (Intel Aries) и содержит только Enhanced IDE контроллер.
Наконец модель VL/1-486SV2GX4 на популярной микросхеме SiS 471
ориентирована на шину VLB (2 слота). Среди особенностей можно отметить
поддержку кэш-памяти большого объема - до 1МВ. Новые версии плат PVI
предусматривают Plug&Play, для более старых возможен upgrade для BIOS.


ПРОИЗВОДИТЕЛЬНОСТЬ


Системная плата должна обеспечивать достижение максимально высокой
производительности как процессора и оперативной памяти, так и других частей
компьютера — графических адаптеров, жестких дисков и прочих. Поэтому
тестирование системной платы на производительность, предполагающее оценку
быстродействия практически всех компонентов, дает полезную информацию не
только о ней самой, но и об этих компонентах. Сопоставление результатов
может помочь в выборе того или иного технического решения и конкретных
типов комплектующих. Следует сразу оговориться, что не стоит
абсолютизировать результаты какого-либо тестирования. Идеальных тестов не
бывает, они в той или иной мере рассчитаны на оценку либо выделенных
подсистем компьютера, либо на некоторые интегральные характеристики. В
данном случае это не более чем ориентир, особенно полезный при настройке
системы. Лучший тест - это конкретная рабочая среда конкретного
пользователя.
Анализ результатов тестирования показывает, что хотя применение новых
типов памяти и дает некоторый выигрыш в производительности, он невелик. Это
легко понять с учетом того, что даже стандартная кэш-память второго уровня
обеспечивает для типовых задач доступ к оперативной памяти со скоростью,
достаточно близкой к максимально возможной для данного типа процессора, так
что дальнейшее ускорение дается с большим трудом и не может быть
значительным. Тем не менее, применение новых типов памяти является вполне
оправданным, так как позволяет поднять реальную производительность при
работе со многими приложениями и в мультизадачной среде. Из некоторых
источников и публикаций можно сделать и еще один важный вывод. Он
заключается в том, что главное средство повышения производительности всех
подсистем компьютера, включая графическую и, с некоторыми оговорками,
жесткие диски, — это использование более мощного процессора.


Оперативная память


Практически все компьютеры используют три вида памяти: оперативную,
постоянную и внешнюю.
Оперативная память предназначена для хранения переменной информации,
как она допускает изменение своего содержимого в ходе выполнения
микропроцессором вычислительных операций. Таким образом, этот вид памяти
обеспечивает режимы записи, считывания и хранения информации. Поскольку в
любой момент времени доступ может осуществляться к произвольно выбранной
ячейке, то этот вид памяти называют также памятью с произвольной выборкой —
RAM (Random Access Memoiy). Для построения запоминающих устройств типа RAM
используют микросхемы статической и динамической памяти.
Постоянная память обычно содержит такую информацию, которая не должна
меняться в ходе выполнения микропроцессоров программы. Постоянная память
имеет собственное наз-вание — ROM (Read Only Memory), которое указывает на
то, чт'о она обеспечивает только режимы считывания и хранения. Постоянная
память обладает тем преимуществом, что может сохранягь информацию и при
отключенном питании. Это свойство получило название энергонезависимость.
Все микросхемы постоянной памяти по способу занесения в них информации
(программированию) делятся на масочные (ROM), программируемые
изготовителем, однократно программируемые пользователем (Programmable ROM)
и многократно программируемые пользователем (Erasable PROM). Последние в
свою очередь подразделяются на стираемые электрически и с помощью
ультрафиолетового облучения. К элементам ЕРROM с электрическим стиранием
информации относятся и микросхемы флэш-памяти. От обычных EPROM они
отличаются высокой скоростью доступа и стирания записанной.информации.
Вешняя память реализована обычно на магнитных носителях.


Оперативная память

Оперативная память составляет не большую, но, безусловно, важнейшую
часть персонального компьютера. Если от типа процессора зависит количество
адресуемой памяти, то быстродействие используемой оперативной памяти во
многом определяет скорость работы процессора, и в конечном итоге влияет на
производительность всей системы.
Практически любой персональный IBM-совместимый компьютер оснащен
оперативной памятью, реализованной микросхемами динамического типа с
произвольной выборкой. (DRAM, Dynamic Random Access Memory). Каждый бит
такой памяти физически представлен в виде наличия (или отсутствия) заряда
на конденсаторе, образованном в структуре полупроводникового кристалла.
Поскольку время хранения заряда конденсатором ограничено (из-за
«паразитных» ; утечек), то, чтобы не потерять имеющиеся данные, необход]имо
периодическое восстановление записанной информации, которое и выполняется в
циклах регенерации (refresh cycle). Это является, пожалуй, одним из
основных недостатков динамической памяти, в то время, как по критерию,
увеличивающему информационную емкость, стоимость и энергопотребление, этот
тип памяти во многих случаях предпочтительнее статической памяти (SRAM,
Static RAM). Последняя в качестве элементарной ячейки памяти использует так
называемый статический триггер. Этот тип памяти обладает высоким
быстзодействием и, как правило, используется в самых «узких». местах
системы, например, для организации памяги.


Корпуса и маркировка

Элементы динамической памяти для персональных компьютеров бывают
конструктивно выполнены либо в виде отдельных микросхем в корпусах типа DIP
(Dual In line Package), либо в виде модулей памяти типа SIP/SIPP (Single In
line Pin Package) или типа SIMM (Single In line Mernory Module). Модули
памяти представляют собой небольшие текстолитовые платы с печатным монтажом
с установленными на них микросхемами памяти в DIP-корпусах. При этом для
подключения к системной плате на SIMM используется печатный («ножевой»)
разъем, а на модулях SIP — штыревой.

Логическая организация памяти

Используемый в IBM PC/XT процессор i8086 через свои 20 адресных линий
может иметь доступ к пространству памяти всего в 1 Мбайт. Но в то время,
когда появились эти компьютеры, возможность увеличения доступной
оперативной памяти в 10 раз (по сравнению с обычными 64 Кбайт) была просто
фантастической. Отсюда наверно и появилась «волюнтаристская» цифра — 640
Кбайт. Эти первые 640 Кбайт адресуемого пространства в IBM-совместимых
компьютерах называют обычно стандартной памятью (conventional memory).
Оставшиеся 384 Кбайт были зарезервированы для систем использования и носят
название памяти в верхних или высших адресах (UMB, Upper Memory Blocks).
Эта область памяти резервируется под размещение системного ROM BIOS (Read
Only Меш Basic Input Output System), видеопамяти и ROM-памяти, полнительных
адаптеров.


Дополнительная, или ехрanded-памягь

Почти на всех персональных компьютерах область UMB редко оказывается
заполненной полностью. Пустует, как правило, область расширения системного
ROM BIOS часть видеопамяти и области под дополнительные модули ROM. На этом
и базируется спецификация дополнительной памяти EMS (Expanded Memory
Specification), разработка фирмами Lotus Development, Intel и Microsoft
(поэтому называемая иногда LIM-спецификацией) еще в 1985 г. и позволяющая
использовать оперативную память свыше стандартных 640 Кбайт для прикладных
программ. Принцип использования дополнительной памяти основан на
переключении блоков (страниц) памяти. В выделяется незанятое «окно» (page
frame) в 64-Кбайт, которое разбито на 16-килобайтные страницы. Программные
и аппаратные средства позволяют отображать любой 16-килобайтный сегмент
этой дополнительной expanded-иамйти в любой из выделенных 16-килобайтных
страниц окна. Хотя микропроцессор всегда обращается к данным, хранимым в
окне (адрес 1 Мбайт), адреса этих данных могут быть смещены в
дополнительной памяти относительно окна на несколько мегабайт. Спецификация
LIM/EMS 4.0 позволяет использовать до 2048 логических страниц и расширить
объем адресуемой памяти до 32 Мбайт. Кроме этого, как и в EMS, физические
страницы могут быть расположены в любом месте памяти , отличный от 16
Кбайт. Таким образом могут задействоваться области видеопамяти и UMB.
Возможности спецификации позволяют, в частности, организовать многозадачный
режим работы.


Paсширенная, или ехрanded-памягь

Компьютеры, использующие процессор i80286 с 24-разрядными адресными
шинами, физически могут адресовать 16 Мбайт, а в случае процессоров
i80386/486 — 4 Гбайта памяти. Такая возможность появляется только при
защищённом режиме работы процессора (protected mode), которого
операционная система MS DOS не поддерживает. Расширенная память
располагается выше области адресов 1 Мбайт. Для работы с extended-памятью
микропроцессор должен переходить из реального в защищенный режим и обратно.
Микропроцессоры i80386/486 выполняют эту операцию достаточно легко, чего не
скажешь о i80286. При наличии соответствующего программного драйвера
расширенную память можно эмулировать как дополнительную. Аппаратную
поддержку в этом случае должен обеспечивать процессор не ниже i80386 или
вспомогательный набор специальных микросхем.

Кэш-память


Кэш-память предназначена для согласования скорости работы сравнительно
медленных устройств, таких, например как динамическая память с относительно
быстрым микропроцессором. Использование кэш-памяти позволяет избегать
циклов ожидания в его работе, которые снижают производительность всей
системы.
У микропроцессора, синхронизируемого, например, тактовой частотой 33
МГц, тактовый период составляет приблизительно 30 нс. Обычные современные
микросхемы динамической памяти имеют время выборки от 60 до 80 нс. Отсюда,
в частности, следует, что центральный процессор вынужден простаивать 2-3
периода тактовой частоты (т.е. имеет 2-3 цикла ожидания), пока информация
из соответствующих микросхем памяти установится на системной шине данных
компьютера. Понятно, что в это время процессор не может выполнять никакую
другую работу. Такая ситуация ведет обычно к тому, что общая
производительность системы снижается, что, разумеется, крайне нежелательно.
С помощью технологии обработки, использующей кэш-память, обычно
делается попытка согласовать работу медленных внешних устройств с быстрым
процессором. В переводе с английского слово «сасhе» означает не что иное,
как убежище или тайник. Эти значения, очевидно, можно толковать по-разному:
и как то, что кэш, по сути, является промежуточным буферным запоминающим
устройством, и как то, что работа кэш-памяти практически прозрачна (т.е.
невидима) для пользователя. Кстати, в отечественной литературе синонимом
кэш-памяти является термин «сверхоперативная память».
Соответствующий контроллер кэш-памяти должен заботиться о том, чтобы
команды и данные, которые будут необходимы микропроцессору в определенный
момент времени, оказывались в кэш-памяти именно к этому моменту. При
некоторых обращениях к оперативной памяти соответствующие значения
заносятся в кэш. В ходе последующих операций чтения по тем ке адресам
памяти обращения происходят только к кэш-память, без затраты процессорного
времени на ожидание, которое неизбежно при работе с основной динамической
памятью. В персональных компьютерах технология использования кэш-памяти
находит применение прежде всего при обмене данными между микропроцессором и
оперативной памятью, а также между основной памятью и внешней (накопителями
на магнитных носителях).
На кристалле микросхемы оперативной памяти SRАМ находится огромное
количество транзисторов. Как уже говорилось, принщп работы ячейки
динамической памяти состоит в сохранении ; заряда на крошечном
конденсаторе, выполненном в полупроводниковой структуре кристалла. Понятно,
что для того чтобы зарядить конденсатор до определенного значения,
необходимо некоторое время. Чтобы конденсатор разрядился, также необходимо
определенное время. Таким образом, в результате процессов заряда и разряда
конденсатора ячейка памяти устанавливает либо в состояние 1, либо в
состояние 0. Поскольку для заряда и разряда конденсатора необходимо вполне
определенное (и немалое) время, то в этом и кроется причина ограниченного
быстродействия динамической памяти.
Статическая же память основана на триггерах, в которых применяются
интегральные транзисторы-переключатели. Такие транзисторы используют
ключевой принцип работы: они либо закрыты, либо открыты. Конечно, на
переход транзистора из одного состояния в другое также необходимо какое-то
время, однако оно существенно меньше времени заряда-разряда конденсатора,
выполняющего роль элемента памяти. Наряду с таким достоинством, как
быстродействие по отношению к динамической памяти, статическая память имеет
и недостатки. Она потребляет больший ток и имеет более сложную архитектуру
-- на одну ячейку памяти требуется больше транзисторов. Как следствие
этого, статическая память существенно дороже динамической. Кроме того, при
одинаковом коэффициенте интеграции статическая память обладает значительно
меньшей информационной емкостью.

При обмене данными возникает похожая проблема. Адреса данных, которые
вскоре понадобятся процессору для обработки, находятся в большинстве
случаев рядом с адресами данных, обрабатываемых непосредственно в данное
время. Поэтому кэш-контроллер должен также заботиться о размещении всего
блока данных в статической памяти.
Метод Write Through, называемый также методом сквозной записи,
предполагает наличие двух копий данных — одной в основной памяти, а другой
— в кэш-памяти. Каждый цикл записи процессора в память идет через кэш. Это
обусловливает, конечно, высокую загрузку системной шины, так как на каждую
операцию модификации данных приходится две операции записи. Поэтому каждое
обновление содержимого кэш-памяти ощутимо сказывается на работе шины. С
другой стороны, микропроцессор по-прежнему вынужден ожидать окончания
записи в основную память.
Метод Buffered Write Through является разновидностью метода Write
Through и называется также методом буферизованной сквозной записи. Для того
чтобы как-то уменьшить загрузку шины, процесс записи выполняется в один или
несколько буферов, которые работают по принципу FIFO (First Input-First
Output). Таким образом, цикл записи для микропроцессора заканчивается
практически мгновенно (т.е. когда данные записаны в буфер), хотя информация
в основной памяти еще не сохранена. Сам же микропроцессор может выполнять
дальнейшую обработку команд. Конечно, соответствующая логика управления
должна заботиться о том, чтобы своевременно опустошать заполненные буферы.
При использовании данного метода процессор полностью освобожден от работы с
основной памятью.
При использовании метода Write Back, называемого также методом
обратной записи, цикл записи микропроцессора происходит сначала в кэш-
память, если там есть адрес приемника. Если адреса приемника в кэш-памяти
не оказывается, то информация записывается непосредственно в память.
Содержимое основной памяти обновляется только тогда, когда из кэш-памяти в
нее записывается полный блок данных, называемый длиной строки-кэша (cache-
line).
При работе с кэш-памятью применяется ассоциативный принцип, когда
старшие разряды адреса используются в качестве признака, а младшие — для
выбора слова. Архитектура кэш-памяти определяется тем, каким образом память
отображается на кэш. Существуют три разновидности отображения: кэш-память с
прямым отображением, частично ассоциативная и полностью ассоциативная. При
прямом отображении каждая ячейка основной памяти может отображаться только
на одну ячейку кэша, в частично ассоциативной —на две и больше (т.е., если
одна ячейка кэша занята, можно использовать другую). В случае наличия
четырех входов кэш-память называют 4-канальной частично ассоциативной, как,
например, у i486. При полностью ассоциативном подходе в качестве разрядов
признаков используются все адресные разряды.

BIOS и CMOS RAM


Базовая система ввода-вывода BIOS (Basic Input Output System)
называется так потому, что включает в себя обширный набор программ ввода-
вывода, благодаря которым операционная система и прикладные программы могут
взаимодействовать с различными устройствами как Самого компьютера, так и с
устройствами, подключенными к нему. Вообще говоря, в архитектуре IBM-
совместимого компьютера система BIOS занимает особое место. С одной
стороны, ее можно рассматривать, как составную часть аппаратных средств, с
другой стороны, она является как бы одним из программных модулей
операционной системы.
Заметим, что система BIOS, помимо программ взаимодействия с
аппаратными средствами на физическом уровне, содержит программу
тестирования при включении питание компьютера POST (Power-On-Self-Test) и
программу начального загрузчика. Последняя программа необходима для
загрузки операционной системы с соответствующего накопителя.
Система BIOS в IBM-совместимых компьютерах реализована в виде одной
или двух микросхем, установленных на системной плате компьютера. Наиболее
перспективным для хранения системы BIOS является сейчас флэш-память. BIOS
на ее основе имеют, например, системные платы фирм Intel, Mylex, Compaq и
т.д. Это позволяет легко модифицировать старые или добавлять дополнительные
функции для поддержки новых устройств, подключаемых к компьютеру.
Поскольку содержимое ROM BIOS фирмы IBM было защищено авторским правом
(т.е. его нельзя подвергать копированию), то большинство других
производителей компьютеров вынуждены были использовать микросхемы BIOS
независимых фирм, системы BIOS которых, разумеется, были практически
полностью совместимы с оригиналом. Наиболее известны из этих фирм три:
American Megatrends Inc. (AMI), Award Software и Phoenix Technologies.


CMOS RAM

Система BIOS в компьютерах, основанных на микропроцессорах i80286 и
выше, неразрывно связана с неизменяемой памятью (CMOS RAM), в которой
хранится информация о текущих показаниях часов, значение времени для
будильника, конфигурации компьютера: количестве памяти, типах накопителей и
т.д. Именно в этой информации нуждаются программные модули системы BIOS.
Название CMOS RAM обязано тому, что эта память выполнена на основе структур
КМОП (CMOS - Complementary Metal-Oxide-Semiconductor) которые, как
известно, отличаются малым энергопотреблением.
В системе BIOS имеется программа, называемая Setup, которая может
изменять содержимое CMOS-памяти. Вызывается эта программа определенной
комбинацией клавиш, которая обычно выводится в качестве подсказки на экран
монитора после включения питания компьютера. Во время загрузки компьютера
можно запустить программу Setup для системы BIOS.
Напомним, что под обычными установками (Standard CMOS Setup) мы
понимаем информация дате (месяц, день, год), текущих показаниях часов
(часы, минуты, секунды), количестве стандартной и расширенной мяти (в
килобайтах), технических параметрах и типе накопителей, дисплея, а также о
подключении клавиатуры. Заме например, что если в этой программе в строке
Keyboard сказать «Not Installed», то даже при отсутствии клавиатуры
компьютер не выдаст сообщения об ошибке.
Расширенные установки (Advanced CMOS Setup и Advanced ChipSet Setup)
включают в себя дополнительные возможности конфигурирования системной
платы. Наиболее общими являются, например, такие возможности, как
допустимая скорость ввода символов с клавиатурв (по умолчанию 15 символов в
секунду), тестирование, тестирование памяти выше границы 1 Мбайт,
разрешение использования арифметического сопроцессора Weitek, приоритет или
последовательность загрузки (т.е. попытка загрузки компьютера сначала с
накопителя со сменным, а затем несменным носителем или наоборот),
установка определенной тактовой частоты микропроцессора при включении,
разрешение парольной защиты и т.д. Как правило, расширенные установки
допускают определение областей «теневой» (shadow) памяти для системной ROM
BIOS, а также ROM BIOS видеоадаптеров, контроллеров накопителей и
дополнительных адаптеров. Кроме этого, возможна установка тактовой частоты
системной шины, а также числа тактов ожидания (или временной задержки) для
микропроцессора при обращении к устройствам ввода-вывода, оперативной
и/или кэш-памяти.
Заметим, что в случае повреждения микросхемы CMOS RAM (а также при
разряде батареи или аккумулятора) программа Setup имеет возможность
воспользоваться некой информацией по умолчанию (BIOS Setup Default Values),
которая хранится в таблице соответствующей микросхемы ROM BIOS.



НОВЫЕ ВИДЫ ПАМЯТИ


Резкое повышение быстродействия процессоров и переход на 32-разрядные
многозадачные операционные системы существенно поднимают требования и к
другим компонентам компьютера. Важнейшим из них является оперативная
память. Возрастание внешних тактовых частот процессоров с 33-40 МГц,
характерных для семейства 486 (486DX2-66/80 и 486DX4-100/120), до 50-66 МГц
для Pentium (Pentium 75/90/100/120/133), требует прежде всего адекватного
увеличения быстродействия подсистемы памяти. Поскольку в качестве
оперативной используется относительно медленная динамическая память DRAM
(Dynamic Random Access Memory), главный способ увеличения пропускной
способности основан на применении кэш-памяти. Кроме встроенной в процессор
кэш-памяти первого уровня применяется и кэш-память второго уровня
(внешняя), построенная на более быстродействующих, чем DRAM, микросхемах
статической памяти SRAM (Static RAM). Для высоких тактовых частот нужно
увеличивать быстродействие SRAM. Кроме того, в многозадачном режиме
эффективность работы кэш-памяти также может снижаться. Поэтому актуальной
становится задача не только увеличения быстродействия кэш-памяти, но и
ускорения непосредственного доступа к динамической памяти. Для решения этих
проблем начинают использоваться новые типы статической и динамической
памяти.
Требования к объемам памяти диктуются программным обеспечением. При
использовании Windows оценить необходимое количество памяти можно на основе
тестов Winstone, использующих наиболее популярные приложения Windows.
Соответствующие данные представлены на рисунке 1.
[pic]



Статическая память


В качестве кэш-памяти второго уровня практически всегда применялась (и
до сих пор продолжает широко применяться) стандартная асинхронная память
SRAM. При внешних тактовых частотах порядка 33 МГц хорошие результаты
давала статическая память со временем выборки 15-20 ns. Для эффективной
работы на частотах выше 50 МГц такого быстродействия уже недостаточно.
Прямое уменьшение времени выборки до нужных величин (12-8 ns) обходится
дорого, так как требует зачастую применения дорогой технологии Bi-CMOS
вместо CMOS, что неприемлемо для массового рынка. Поэтому предлагаемое
решение заключается в применении новых типов памяти с усовершенствованной
архитектурой, которые первоначально были разработаны для мощных рабочих
станций. Наиболее перспективна синхронная SRAM. В отличие от обычной
асинхронной, она может использовать те же тактовые сигналы, что и остальная
система, поэтому и называется синхронной. Она снабжена дополнительными
регистрами для хранения информации, что освобождает остальные элементы для
подготовки к следующему циклу еще до того, как завершился предыдущий.
Быстродействие памяти при этом увеличивается примерно на 20%. Эффективную
работу на самых высоких частотах может обеспечить особая разновидность
синхронной SRAM — с конвейерной организацией (pipelined burst). При ее
применении уменьшается число циклов, требующихся для обращения к памяти в
групповом режиме. Пример для тактовой частоты 66 МГц (Pentium 100 и Pentium
133) приведен в таблице1. В случае группового режима чтения-записи для
первого обращения нужно 3 цикла, для каждого следующего — только 1.


|Тип цикла |Асинхронная SRAM |Конвейерная SRAM |
|Single Read |3 |3 |
|Single Write |4 |3 |
|Burst Read |3-2-2-2 |3-1-1-1 |
|Burst Write |4-3-3-3 |3-1-1-1 |



Динамическая память

Так же, как и для статической памяти, прямое сокращение времени
выборки для динамической памяти достаточно трудно технически осуществимо и
приводит к резкому росту стоимости. Поэтому ориентация в новых системах
идет на микросхемы со временем выборки 60-70 ns. Стандартные микросхемы
DRAM имеют страничную организацию памяти — Fast Page Mode (FPM), которая
позволяет значительно ускорить доступ к последовательно расположенным (в
пределах страницы) данным по сравнению со случаем произвольной выборки.
Поскольку обращения к последовательно расположенным данным в реальных
задачах встречаются очень часто, применение FPM DRAM заметно повышает
производительность. FPM DRAM со временем выборки 60-70 ns обеспечивает
необходимые характеристики для тактовых частот 33-40 МГц. При повышении
тактовой частоты обеспечить надежное и быстрое считывание данных в
страничном режиме уже не удается. Эту проблему в значительной степени
решает применение памяти нового типа - EDO DRAM (Extended Data Output
DRAM). От обычной памяти со страничной организацией она отличается наличием
дополнительных регистров для хранения выходных данных. Увеличивается время,
в течение которого данные хранятся на выходе микросхемы, что делает
выходную информацию доступной для надежного считывания процессором даже при
высоких тактовых частотах (фактически время между обращениями в страничном
режиме можно уменьшить до 30 ns по сравнению с 45 ns для FPM).
Радикальный, но не общепризнанный подход к повышению быстродействия
динамической памяти заключается во встраивании в микросхемы DRAM
собственной кэш-памяти. Это Cached DRAM (CDRAM) и Enhanced DRAM (EDRAM).
Память CDRAM выпускается фирмой Mitsubishi и имеет 16 KB кэш-памяти как на
4, так и на 16 Mbit кристалле, обмен между динамической и встроенной кэш-
памятью осуществляется словами шириной 128 разрядов.
Вообще говоря, применение новых типов динамической памяти позволяет
получать высокую производительность даже и без применения кэш-памяти
второго уровня (если кэш-память первого уровня — типа write back), особенно
в случае CDRAM и Enhanced DRAM, которые именно так и используются. Однако
подавляющее большинство систем для достижения максимальной
производительности строится все-таки с использованием кэш-памяти второго
уровня. Для них наиболее подходит память типа EDO DRAM. К тому же она стала
уже промышленным стандартом, и ее доля будет преобладать в микросхемах
памяти емкостью 16 Mbit и более. Фактически эта память приходит на смену
стандартной FPM DRAM и ее можно применять в любых системах вместо
стандартной.

КОНСТРУКТИВ

Несмотря на то, что наиболее популярным конструктивом для динамической
памяти по-прежнему остается SIMM (Single In-line Memory Module), начинают
применяться и другие стандарты. Возникновение новых стандартов вызвано
необходимостью решения двух основных проблем. Первая связана с увеличением
плотности упаковки элементов памяти, особенно актуальной для рабочих
станций, использующих память очень большого объема, и мобильных систем.
Вторая — с обеспечением устойчивой работы при высоких частотах, которая
зависит от размеров, емкости и индуктивности соединителя. Большую по
сравнению с SIMM плотность упаковки и, соответственно, объем памяти могут
обеспечить модули типа DIMM (Dual In-line Memory Module), у которых, в
отличие от SIMM, контакты на обеих сторонах модуля не объединены, а могут
использоваться независимо.
Микросхемы стандартной статической памяти в основном выпускаются в
корпусах типа DIP и SOJ. Память типа pipelined burst либо запаивается на
системную плату сразу в процессе ее изготовления, либо поставляется в виде
модулей.

ЖЕСТКИЕ ДИСКИ


Большая часть жестких дисков, представленных на мировом рынке,
выпускается специализированными фирмами — Quantum, Seagate, Conner, Western
Digital, Maxtor и некоторыми другими.

Жесткие диски с интерфейсом IDE

Жесткая конкуренция и особая важность в этих условиях ценового фактора
требуют от производителей массовой продукции использования самых
современных технологических достижений. За счет применения записи с высокой
плотностью (400 Mbit на квадратный дюйм) стандартное значение емкости,
приходящейся на один диск (носитель), достигло 540 MB. Это позволяет
уменьшить не только количество дисков, но и магнитных головок и других
элементов, а значит снизить цену и повысить надежность. При применении
таких дисков линейка выпускаемых моделей по емкости выглядит следующим
образом: 540 MB, 1.0, 1.6, 2.2 GB и т. д. Практически все ведущие
производители переходят на выпуск моделей с такой плотностью записи,
которая уже находится на пределе возможностей стандартной технологии,
основанной на применении тон-копленочных магнитных головок. Радикальное
средство — переход на магниторезистивные головки — является для большинства
фирм довольно дорогостоящим, так как технологией их массового производства
обладают только IBM и Fujitsu. Поэтому начинают применяться некоторые
другие решения. Так, фирма Maxtor в новых моделях cepиях Durarigo (540 MB,
1 GB и 1.6 GB) начала применять особую технологию Proximity recording с
псевдо-контактирующей магнитной головкой Tripad (тонкопленочной) и
алмазоподобным углеродным покрытием носителя. Головка находится на очень
близком расстоянии от диска , а в отдельных случаях может даже касаться его
поверхности, что не приводят, однако, к. повреждению магнитного слоя,
защищенного прочным покрытием. Maxtor, а также некоторые другие фирмы
рассматривают эту технологию как более дешевую альтернативу
магниторезистивным головкам и PRML для плотностей записи до 1000 Mbit на
квадратный дюйм.
Интерфейс Enhanced IDE, ставший основным для массовой продукции,
несмотря на очень хорошие скорости передачи, все же уступает интерфейсу
SCSI по возможностям, особенно в многозадачных средах. Ситуация, возможно,
улучшится с принятием спецификации АТА-3, в которой, по предварительным
данным, будут дополнения (command overlapping and queuing, predictive
failure analysis bit и некоторые другие), позволяющие в некоторой степени
приблизиться к SCSI как по эффективности отработки запросов, так и по
контролю за целостностью данных.

Жесткие диски с интерфейсом SCSI

Если 90% жестких дисков, устанавливаемых в персональные компьютеры,
имеют интерфейс Enhanced IDE, и только 10% — SCSI, то для компьютеров,
используемых в качестве серверов, доля SCSI увеличивается до 90%. Интерфейс
SCSI обеспечивает большие преимущества при работе в многозадачном режиме,
поэтому, несмотря на более высокую цену по сравнению с IDE, доля SCSI
жестких дисков будет увеличиваться и для персональных компьютеров. На
нижнем краю диапазона выпускаемых дисков находятся модели, использующие ту
же механику, что и соответствующие диски Enhanced IDE. Соответственно, они
обладают такими же параметрами. Благодаря невысокой цене и хорошей
производительности, область их применения очень широка, начиная от
персональных компьютеров. Большая же часть продукции имеет повышенную
емкость и ориентирована на достижение самого высокого уровня
производительности. Поэтому использование передовых технологий —
магниторезистивных головок и PRML (применяются во всех моделях IBM и
Fujitsu и некоторых моделях других фирм) и усовершенствованных интерфейсов
— приобретает первостепенное значение. Такие диски обладают самыми высокими
параметрами — при емкости 4-8 GB (IBM довела емкость 3.5" моделей до 20 GB)
они имеют кэш-память 512-1024 KB, скорость вращения 7200 об/мин и среднее
время поиска меньше 10 ms. В некоторых случаях лимитирующим фактором
становится быстродействие интерфейса, поэтому кроме стандартного Fast SCSI-
2 со скоростью передачи 10 MB/s применяются также Fast Wide SCSI-2 (SCSI-3)
на 20 MB/s, Ultra SCSI (40 MB/s).



Жесткие диски для аудио и видео

Развитие multimedia вызвало значительный интерес к так называемым
аудио/видео жестким дискам как со стороны потребителей, так и
производителей. Обычные диски оптимизированы для быстрого доступа и быстрой
передачи относительно небольших блоков информации, т. е, для максимального
количества операций ввода/вывода в единицу времени. Для работы со звуком и
видео должна обеспечиваться, наоборот, непрерывная передача информации в
течение достаточно длительного времени с практически постоянной скоростью,
как в случае с магнитной лентой. Обычные диски из-за периодической
процедуры термической калибровки и повторного чтения в случае возникновения
ошибок допускают перерывы в передаче информации на время, достигающее сотен
миллисекунд, что приводит к неприятным последствиям при воспроизведении
изображения и звука. Реально встречающиеся перерывы можно неитрализовать с
помощью кэш-памяти очень большого объема, но это дорогостоящее решение.
Первые специализированные диски для аудио и видео выпустила фирма
Micropоlis. В настоящее время соответствующими возможностями начинают
оснащать свои изделия большинство ведущих производителей — IBM, Fujitsu,
Seagate, Quantum.
В дисках новой конструкции проблемы, связанные с термической калибровкой
решаются относительно легко, так как сервоинформация хранится не на
отдельной выделенной поверхности. а распределена по рабочим поверхностям.
Требуется только модификация встроенного контроллера для оптимизации
процедуры термической калибровки. На уровне контроллера оптимизируется и
процедура коррекции ошибок. Поэтому на основе одной и той же механики можно
создавать и обычные и аудио/видео жесткие диски. Такой подход позволяет
выпускать комбинированные (т. е. переключаемые) диски без особых
дополнительных затрат.
Разные фирмы применяют отличающиеся подходы к производству
аудио/видео дисков. Так, пионер в этой области фирма Micropolis выделила их
в отдельное производство. Seagate ориентируется на комбинированные диски,
которые можно применять как для аудио/видео, так и в обычном режиме. Это
некоторые модели серии Decathlon с ин-герфеисом как SCSI, -так и Fast ATA
(Enhanced ide).
Для аудио/видео жестких дисков важным параметром является
гарантированная скорость передачи информации. Для первых дисков фирмы
Micropоlis она составляла 2.9 MB/s, у современных моделей Gold Line
увеличена до 4 MB/s. IBM для своих дисков Ultrastar AV гарантирует 5 MB/s.



Жесткие диски 2.5" и 1.8"

Ориентированные изначально на мобильные применения, миниатюрные жесткие
диски значительно усовкршенствовались и не уступают моделям для настольных
конструкций. Жесткие диски в стандарте PCMCIA с форм-фактором 1.8" не
смогли занять место штатных устройств массовой памяти для компьютеров типа
notebook и laptop, на которое они вполне обоснованно претендовали. Поэтому
объемы их выпуска ограничены, и они в основном применятся для обмена
информацией и для индивидуальной работы с какими-либо данными. При
постоянно растущих требованиях к емкости дисков оказалось невозможным
обеспечить приемлемый уровень цен при применении столь сложной -технологии,
поэтому функции миниатюрных устройств массовой памяти в основном
возлагаются на модели с форм-фактором 2.5", максимальная емкость которых
превышает уже 1 GB. Фирме Maxtor, лидеру в производстве сверхминиатюрных
изделий, удалось перенести know how, разработанное для 1.8" жестких дисков
MobileMax, на 2.5" модели, что позволило выйти сразу на уровень максимально
достигнутой емкости при меньших, чем у других фирм размерах. Жесткие диски
серии Laramie с интерфейсом Enhanced IDE при толщине всего 12.5 мм имеют
емкость 837 MB, 1GB и 1.34 GB. В них применена технология proximity
recording и контроллер на базе сигнального процессора.
Fujitsu производит 2.5" диски серий Hornet 5 и 6, в которых
применяются магниторезистивные головки и PRML. Емкость дисков составляет
508 MB, 768 MB и 1 GB, интерфейсы — Enhanced IDE и Fast SCSI-2. Диски
обладают высокой производительностью и малым потреблением энергии. Модели с
интерфейсом SCSI предназначены не только для применения в notebook фирмы
Apple, но могут использоваться и в настольных компьютерах, а также для
создания компактных и надежных RAID-массивов.

Надежность

Как для самых емких и производительных жестких дисков с интерфейсом
SCSI, так и для массовых моделей Enhanced IDE, важнейшим параметром
остается надежность. Современные диски обладают очень высокой надежностью,
время наработки на отказ у некоторых моделей достигает 1 000 000 часов.
Однако не следует забывать, что надежность, оцененная по MTBF (Mean Time
Between Failure), — это понятие общее и статистическое, а перед
пользователем стоит задача, как перевести его в конкретное и
индивидуальное. Традиционные подходы к повышению надежности хранения данных
широко известны — это резервное копирование и применение массивов из
нескольких дисков (RAID — Redundant Array of Inexpensive Disks). Несколько
слов о RAID. Это решение, повышающее не тольо надежность, но и
производительность, никогда не относилось к разряду дешевых и доступных.
Однако сейчас, с уменьшением стоимости SCSI жестких дисков, массивы
начинают предлагаться довольно широко, чему способствует также появление
относительно дешевых RAID контроллеров (разрабатываются даже и в ближайшее
время появятся контроллеры, встроенные в системную плату). Наконец,
появился принципиально новый подход, применимый и к индивидуальному диску,
— SMART (Self-Monitoring, Analysis аnd Reporting Technology). Он может
использоваться практически для любой компьютерной периферии и предлагает
наличие- всроенных в устройство средсгв caмодиагностики. SMART
предусматривает использование некоторых реализованных на уровне встроенного
в жесткий диск контроллера процедур, которые проверяют состояние важнейших
частей — двигателя, магнитных головок, рабочих поверхностей, самого
контроллера. Эта информация передается в компьютер, который ее анализирует.
Возможно также определить "пробег" жесткого диска, число
включений/выключений. Совсем недавно Seagate и Quantum также начали
применять SMART в своих жестких дисках. Использование SMART, хотя и
позволяет довольно подробно контролировать состояние диска, не является
панацеей, так как появление некоторых дефектов практически не-возможно
предсказать.

Видеоконтроллеры, акселераторы, видеоускорители


Традиционно основные усилия разработчиков графических адаптеров были
направлены на повышение разрешений, достигаемых при большой глубине цвета
(True Color, т. е. 24 bit или 16.7 млн. цветов), и на ускорение выполнения
возможно большего количества графических операций. Все это требуется в
первую очередь для профессиональной работы в области

Новинки рефератов ::

Реферат: Деловое общение (Менеджмент)


Реферат: Использование Excel (Компьютеры)


Реферат: Щодо визначення поняття "стратегія життя" (Философия)


Реферат: Владимир Высоцкий (Музыка)


Реферат: Казахское ханство в XV-XVII вв. (История)


Реферат: Образование единого российского государства (История)


Реферат: Обеспечение качества машин (Технология)


Реферат: Защита от манипуляции (Психология)


Реферат: Контактная сеть переменного тока 27,5 кВ (Технология)


Реферат: Безопасность в сфере гостиничного хозяйства (Безопасность жизнедеятельности)


Реферат: Христианство (Культурология)


Реферат: Инвестиционная привлекательность проекта (Менеджмент)


Реферат: Метод наблюдения в социологии (Социология)


Реферат: Коммуникации предприятия (Программирование)


Реферат: Бухгалтерский учет и аудит расчетов по оплате труда в с/х (Бухгалтерский учет)


Реферат: Северный Экономический Регион РФ (География)


Реферат: Учет основных средств и нематериальных активов в зарубежных странах (Англия, США) (Бухгалтерский учет)


Реферат: Скоростно-силовая подготовка (Физкультура)


Реферат: Проблема выбора стиля управления руководителем (Психология)


Реферат: Народная война в Тамбовской губернии (История)



Copyright © GeoRUS, Геологические сайты альтруист