GeoSELECT.ru



Естествознание / Реферат: Модели развития Вселенной (Естествознание)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Модели развития Вселенной (Естествознание)


Модели развития Вселенной


Содержание работы:

Введение. 3
1. Начало Вселенной. 3
2. Рождение сверхгалактик и скоплений галактик. 10
3. Рождение галактик. 11
Заключение. 14
Список литературы: 15

Введение.

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во
много раз старше астрономии и вообще человеческой культуры. Зарождение и
эволюция жизни на земле является лишь ничтожным звеном в эволюции
Вселенной. И всё же исследования проведенные в нашем веке, приоткрыли
занавес, закрывающий от нас далекое прошлое.

Современные астрономические наблюдения свидетельствуют о том, что началом
Вселенной, приблизительно десять миллиардов лет назад, был гигантский
огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный
шар был на столько раскален, что состоял лишь из свободных элементарных
частиц, которые стремительно двигались, сталкиваясь друг с другом.

На протяжении десяти миллиардов лет после «большого взрыва» простейшее
бесформенное вещество постепенно превращалось в атомы, молекулы, кристаллы,
породы, планеты. Рождались звезды, системы, состоящие из огромного
количества элементарных частиц с весьма простой организацией. На некоторых
планетах могли возникнуть формы жизни.


1. Начало Вселенной.

Вселенная постоянно расширяется. Тот момент с которого Вселенная начала
расширятся, принято считать ее началом. Тогда началась первая и полная
драматизма эра в истории вселенной, ее называют «большим взрывом» или
английским термином Big Bang.

Под расширением Вселенной подразумевается такой процесс, когда то же самое
количество элементарных частиц и фотонов занимают постоянно возрастающий
объём. Средняя плотность Вселенной в результате расширения постепенно
понижается. Из этого следует, что в прошлом Плотность Вселенной была
больше, чем в настоящее время. Можно предположить, что в глубокой древности
(примерно десять миллиардов лет назад) плотность Вселенной была очень
большой. Кроме того высокой должна была быть и температура, настолько
высокой, что плотность излучения превышала плотность вещества. Иначе говоря
энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей
энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые
мгновения «большого взрыва» вся материя была сильно раскаленной и густой
смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при
столкновении с соответствующими античастицами аннигилировали, но
возникающие гамма-фотоны моментально материализовались в частицы и
античастицы.

Подробный анализ показывает, что температура вещества Т понижалась во
времени в соответствии с простым соотношением : T = 1010 K

Зависимость температуры Т от времени t дает нам возможность определить, что
например, в момент, когда возраст вселенной исчислялся всего одной
десятитысячной секунды, её температура представляла один биллион Кельвинов.


Температура раскаленной плотной материи на начальном этапе Вселенной со
временем понижалась, что и отражается в соотношении. Это значит, что
понижалась средняя кинетическая энергия частиц kT . Согласно соотношению
h?’kT понижалась и энергия фотонов. Это возможно лишь в том случае, если
уменьшится их частота ?. Понижение энергии фотонов во времени имело для
возникновения частиц и античастиц путем материализации важные последствия.
Для того чтобы фотон превратился (материализовался) в частицу и античастицу
с массой mo и энергией покоя moc2, ему необходимо обладать энергией 2moc2
или большей. Эта зависимость выражается так :

h? >=2moc2

Со временем энергия фотонов понижалась, и как только она упала ниже
произведения энергии частицы и античастицы (2moc2), фотоны уже не способны
были обеспечить возникновение частиц и античастиц с массой mo. Так,
например, фотон, обладающий энергией меньшей, чем 2.938 Мэв = 938 Мэв, не
способен материализоваться в протон и антипротон, потому что энергия покоя
протона равна 938 мэв.

В предыдущем соотношении можно заменить энергию фотонов h? кинетической
энергией частиц kT ,

kT >= 2 moc2

то есть

T >= 2 moc2 .

Знак неравенства означает следующее: частицы и соответствующие им
античастицы возникали при материализации в раскаленном веществе до тех пор,
пока температура вещества T не упала ниже значения.

2 moc2

На начальном этапе расширения Вселенной из фотонов рождались частицы и
античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию
частиц и античастиц. Поскольку аннигиляция может происходить при любой
температуре, постоянно осуществляется процесс частица + античастица ? 2
гамма-фотона при условии соприкосновения вещества с антивеществом. Процесс
материализации гамма-фотон ? частица + античастица мог протекать лишь при
достаточно высокой температуре. Согласно тому, как материализация в
результате понижающейся температуры раскаленного вещества приостановилась.
Эволюцию Вселенной принято разделять на четыре эры : адронную, лептонную,
фотонную и звездную.

а) Адронная эра. При очень высоких температурах и плотности в самом начале
существования Вселенной материя состояла из элементарных частиц. Вещество
на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя
эра эволюции Вселенной называется адронной, несмотря на то, что в то время
существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T
упала на 10 биллионов Кельвинов(1013K). Средняя кинетическая энергия частиц
kT и фотонов h? составляла около миллиарда эв (103 Мэв), что соответствует
энергии покоя барионов. В первую миллионную долю секунды эволюции Вселенной
происходила материализация всех барионов неограниченно, так же, как и
аннигиляция. Но по прошествии этого времени материализация барионов
прекратилась, так как при температуре ниже 1013 K фотоны не обладали уже
достаточной энергией для ее осуществления. Процесс аннигиляции барионов и
антибарионов продолжался до тех пор, пока давление излучения не отделило
вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов)
в процессе самопроизвольного распада превратились в самые легкие из
барионов (протоны и нейтроны). Так во вселенной исчезла самая большая
группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны,
которые далее не распадались, иначе бы нарушился закон сохранения
барионного заряда. Распад гиперонов происходил на этапе с 10-6 до 10-4
секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10-
4 с.), температура ее понизилась до 1012 K, а энергия частиц и фотонов
представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких
адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не
могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной
достиг 10-4 с., в ней исчезли все мезоны. На этом и кончается адронная эра,
потому что пионы являются не только самыми легкими мезонами, но и
легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная
сила) не проявлялась во Вселенной в такой мере, как в адронную эру,
длившуюся всего лишь одну десятитысячную долю секунды.

б) Лептонная эра. Когда энергия частиц и фотонов понизилась в пределах от
100 Мэв до 1 Мэв в веществе было много лептонов. Температура была
достаточно высокой, чтобы обеспечить интенсивное возникновение электронов,
позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную
эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов - пионов - в мюоны и
мюонное нейтрино, а кончается через несколько секунд при температуре 1010
K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и
позитронов прекратилась. Во время этого этапа начинается независимое
существование электронного и мюонного нейтрино, которые мы называем
«реликтовыми». Всё пространство Вселенной наполнилось огромным количеством
реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

в) Фотонная эра или эра излучения. На смену лептонной эры пришла эра
излучения, как только температура Вселенной понизилась до 1010 K , а
энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция
электронов и позитронов. Новые электронно-позитронные пары не могли
возникать вследствие материализации, потому, что фотоны не обладали
достаточной энергией. Но аннигиляция электронов и позитронов продолжалась
дальше, пока давление излучения полностью не отделило вещество от
антивещества. Со времени адронной и лептонной эры Вселенная была заполнена
фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше,
чем протонов и электронов. Важнейшей составной Вселенной после лептонной
эры становятся фотоны, причем не только по количеству, но и по энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной,
была введена величина плотности энергии. Это количество энергии в 1 куб.см,
точнее, среднее количество (исходя из предпосылки, что вещество во
Вселенной распределено равномерно). Если сложить вместе энергию h? всех
фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии
излучения Er . Сумма энергии покоя всех частиц в 1 куб.см является средней
энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и
частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился
в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь
раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то
время как энергия покоя во время расширения Вселенной не меняется, энергия
фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания,
словно «устают» со временем. Вследствие этого плотность энергии фотонов
(Er) падает быстрее, чем плотность энергии частиц (Em). Преобладание во
вселенной фотонной составной над составной частиц (имеется в виду плотность
энергии) на протяжении эры излучения уменьшалось до тех пор, пока не
исчезло полностью. К этому моменту обе составные пришли в равновесие (то
есть Er=Em). Кончается эра излучения и вместе с этим период «большого
взрыва». Так выглядела Вселенная в возрасте примерно 300 000 лет.
Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

«Большой взрыв» продолжался сравнительно недолго, всего лишь одну
тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока,
это всё же была самая славная эра Вселенной. Никогда после этого эволюция
Вселенной не была столь стремительна, как в самом её начале, во время
«большого взрыва». Все события во Вселенной в тот период касались свободных
элементарных частиц, их превращений, рождения, распада, аннигиляции. Не
следует забывать, что в столь короткое время (всего лишь несколько секунд)
из богатого разнообразия видов элементарных частиц исчезли почти все: одни
путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые
легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

После «большого взрыва» наступила продолжительная эра вещества, эпоха
преобладания частиц. Мы называем её звездной эрой. Она продолжается со
времени завершения «большого взрыва» (приблизительно 300 000 лет) до наших
дней. По сравнению с периодом «большим взрыва» её развитие представляется
как будто слишком замедленным. Это происходит по причине низкой плотности и
температуры. Таким образом, эволюцию Вселенной можно сравнить с
фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы
стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем
красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики
- ничтожные явления в сравнении с большим взрывом.


2. Рождение сверхгалактик и скоплений галактик.

Во время эры излучения продолжалось стремительное расширение космической
материи, состоящей из фотонов, среди которых встречались свободные протоны
или электроны и крайне редко - альфа-частицы. (Не надо забывать, что
фотонов было в миллиард раз больше чем протонов и электронов). В период эры
излучения протоны и электроны в основном оставались без изменений,
уменьшалась только их скорость. С фотонами дело обстояло намного сложнее.
Хотя скорость их осталась прежней, в течение эры излучения гамма-фотоны
постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны
света. Вещество и фотоны к концу эры остыли уже настолько, что к каждому из
протонов мог, присоединится один электрон. При этом происходило излучение
одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким
образом, возник атом водорода. Это была первая система частиц во Вселенной.

С возникновением атомов водорода начинается звездная эра - эра частиц,
точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным
количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся
в различных частях Вселенной с разной скоростью. Неодинаковой была также и
его плотность. Он образовывал огромные сгустки, во много миллионов световых
лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и
в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение
газа внутри сгустков шло медленнее, чем расширение разреженного водорода
между самими сгущениями. Позднее из отдельных участков с помощью
собственного притяжения образовались сверхгалактики и скопления галактик.
Итак, крупнейшие структурные единицы Вселенной - сверхгалактики - являются
результатом неравномерного распределения водорода, которое происходило на
ранних этапах истории Вселенной.


3. Рождение галактик.

Колоссальные водородные сгущения - зародыши сверх галактик и скоплений
галактик - медленно вращались. Внутри их образовывались вихри, похожие на
водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы
называем эти системы протогалактиками, т.е. зародышами галактик. Несмотря
на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной
частью сверхгалактик и по размеру не превышали одну тысячную
сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд,
которые мы называем галактиками. Некоторые из галактик до сих пор
напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения
предопределила форму галактики, родившейся из этого вихря. Выражаясь
научным языком, скорость осевого вращения определяет тип будущей галактики.
Из медленно вращающихся вихрей возникли эллиптические галактики, в то время
как из быстро вращающихся родились сплющенные спиральные галактики.

В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар
или несколько сплюнутый эллипсоид. Размеры такого правильного гигантского
водородного облака были от нескольких десятков до нескольких сотен тысяч
световых лет. Нетрудно определить, какие из водородных атомов вошли в
состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики,
а какие остались в космическом пространстве вне нее. Если энергия связи сил
гравитации атома на периферии превышала его кинетическую энергию, атом
становился составной частью галактики. Это условие называется критерием
Джинса. С его помощью можно определить, в какой степени зависела масса и
величина протогалактики от плотности и температуры водородного газа.

Протогалактика, которая вообще не вращалась, становилась родоначальницей
шаровой галактики. Сплющенные эллиптические галактики рождались из медленно
вращающихся протогалактик. Из-за недостаточной центробежной силы
преобладала сила гравитационная. Протогалактика сжималась и плотность
водорода в ней возрастала. Как только плотность достигала определенного
уровня, начали выделятся и сжимается сгустки водорода. Рождались
протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в
шаровой или слегка приплюснутой галактике происходило почти одновременно.
Этот процесс продолжался относительно недолго, примерно сто миллионов лет.
Это значит, что в эллиптических галактиках все звезды приблизительно
одинакового возраста, т.е. очень старые. В эллиптических галактиках весь
водород был исчерпан сразу же в самом начале, примерно в первую сотую
существования галактики. На протяжении последующих 99 сотых этого периода
звезды уже не могли возникать. Таким образом, в эллиптических галактиках
количество межзвездного вещества ничтожно.

Спиральные галактики, в том числе и наша, состоят из очень старой
сферической составляющей ( в этом они похожи на эллиптические галактики) и
из более молодой плоской составляющей, находящейся в спиральных рукавах.
Между этими составляющими существует несколько переходных компонентов
разного уровня сплюснутости, разного возраста и скорости вращения. Строение
спиральных галактик, таким образом, сложнее и разнообразнее, чем строение
эллиптических. Спиральные галактики кроме этого вращаются значительно
быстрее, чем галактики эллиптические. Не следует забывать, что они
образовались из быстро вращающихся вихрей сверхгалактики. Поэтому в
создании спиральных галактик участвовали и гравитационная и центробежная
силы.

Если бы из нашей галактики через сто миллионов лет после ее возникновения
(это время формирования сферической составляющей) улетучился весь
межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика
стала бы эллиптической.

Но межзвездный газ в те далекие времена не улетучился, и, таким образом
гравитация и вращение могли продолжать строительство нашей и других
спиральных галактик. На каждый атом межзвездного газа действовали две силы
- гравитация, притягивающая его к центру галактики и центробежная сила,
выталкивающая его по направлению от оси вращения. В конечном итоге газ
сжимался по направлению к галактической плоскости. В настоящее время
межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий
слой. Он сосредоточен прежде всего в спиральных рукавах и представляет
собой плоскую или промежуточную составляющую, названную звездным населением
второго типа.

На каждом этапе сплющивания межзвездного газа во все более утончающийся
диск рождались звезды. Поэтому в нашей галактике можно найти, как старые,
возникшие примерно десять миллиардов лет назад, так и звезды родившиеся
недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных
скоплениях. Можно сказать, что чем более сплющена система, в которой
родились звезды, тем они моложе.


Заключение.

Вселенная развивается и в наше время. В спиральных галактиках рождаются и
умирают звезды. Вселенная продолжает расширятся.



Список литературы:

1. Йосип Клечек Вселенная и земля – М. Артия 1985

2. Кесарев В.В. Эволюция вещества во вселенной – М. Атомиздат 1976





Реферат на тему: Моделирование
Моделирование
ПРОГНОЗИРОВАНИЕ – в узком значении специальные научные исследования
конкретных перспектив развития какого-либо явления. Как одна из форм
конкретизации научного предвидения в социальной сфере находится во
взаимосвязи с планированием, программированием, проектированием,
управлением. Выделяют три класса методов прогнозирования: экстраполяция,
моделирование, опрос экспертов.
Существует множество определений модели, в зависимости от той сферы, в
которой она строится. Вот лишь некоторые примеры,
1) Устройство, воспроизводящее, имитирующее строение и действие какого-
либо другого («моделируемого») устройства в научных, производственных
(при испытаниях) или спортивных целях.
2) В широком смысле любой образ, аналог (мысленный или условный:
изображение, описание, схема, чертеж, график, план, карта и т.п.)
какого-либо объекта, процесса или явления («оригинала» данной модели),
используемый в качестве его «заместителя», «представителя».
3) В математике и логике моделью какой-либо системы аксиом называют любую
совокупность (абстрактных) объектов, свойства которых и отношения
между которыми удовлетворяют данным аксиомам, служащим тем самым
совместным (неявным) определением такой совокупности.
4) Модель в языкознании, абстрактное понятие эталона или образца какой-
либо системы (фонологической, грамматической и т.п.), представление
самых общих характеристик какого-либо языкового явления; общая схема
описания системы языка или какой-либо его подсистемы.
Но, несмотря на такое разнообразие формулировок, все же попытаемся дать
моделированию надлежащее определение.
Итак, моделирование – это исследование каких-либо явлений, процессов или
систем объектов путем построения и изучения их моделей; использование
моделей для определения или уточнения характеристик и рационализации
способов построения вновь конструируемых объектов. Моделирование одна из
основных категорий теории познания: на идее моделирования по существу
базируется любой метод научного исследования как теоретической (при
котором используются различного рода знаковые, абстрактные модели), так и
экспериментальный (использующий предметные модели).
Построение моделей как одна из сторон диалектической пары
противоположностей анализ-синтез имеет много аспектов, из которых
некоторый выдвигается на первый план.
Особенно существенным при построении моделей является аспект отражения,
понимаемого в смысле теории познания.
Каждая модель хранит знания в надлежащей форме; при этом запоминание
знаний, как правило, связано с уменьшением избыточности. Поэтому каждая
модель имеет также языковую функцию. Содержание знаний является
семантической стороной; способы, с помощью которых знания вводятся в
модель, кодируются в ней, являются синтаксической стороной. Последний
языковой компонент имеет большое значение при активизации модели при
каждом приведении ее в действие.
Но в то же время модель в своей функции как структура для хранения
знаний является связующим звеном между теоретическим и эмпирическим
познанием. Фразу «нет ничего проще хорошей теории» следует воспринимать
дословно. Формализованная теория позволяет описать большое число частных
фактов с помощью наибольшего числа основных результатов. Следовательно,
главное назначение теории – в уменьшении избыточности, обусловленной
изобилием частных фактов, и связанных с этим более глубоким познанием
закономерных связей.
В основе каждой модели лежит более или менее развитая теория
отображаемого объекта; эта теория укладывается в синтаксически
установленные рамки, в концепцию системы, положенную в основу конкретного
построения модели.
Системная концепция фиксирует общие рамки модели, иначе говоря,
определяет структуру памяти модели. Конкретная форма модели, в которой
она может действовать в качестве замены только одного конкретного
объекта, получается благодаря тому, что экспериментальные, то есть
эмпирические, данные приводятся в соответствии с этими рамками, то есть
для параметров модели, ее степеней свободы шаг за шагом устанавливаются
все более достоверные значения. В этом смысле каждая разработанная модель
выражает компромисс между теорией и практикой, между теоретическими
познаниями и эмпирическими данными.
Следует отметить некоторые вещи и процессы, используемые в процессе
моделирования.
Например, гибридная вычислительная система – комплекс из нескольких ЭВМ
или вычислительных устройств (аналоговых и цифровых), объединенных единой
системой управления. Ее применяют при моделировании сложных систем, для
оптимизации систем автоматического управления, решения нелинейных
уравнений в частных производных и т.д.
Следует также упомянуть идеализацию – процесс идеализации, мыслительное
конструирование понятий об объектах, процессах и явлениях, не
существующих в действительности, но таких, для которых имеются прообразы
в реальном мире (например, «точка», «абсолютно твердое тело», «идеальный
газ»). Идеализация позволяет формулировать законы, строить абстрактные
схемы реальных процессов.
Наконец, вероятностный автомат – устройство (система), автоматически
изменяющее свое состояние в зависимости от последовательности предыдущих
состояний и случайных входных сигналов. Вероятностный автомат используют
при моделировании сложных процессов, например систем автоматического
управления движением транспорта на перекрестке двух улиц.
Языки программирования также тесно связаны с моделированием. Это
формальные языки для описания данных (информации) и алгоритма (программы)
их обработки на ЭВМ. Основу языков программирования составляют
алгоритмические языки. Первыми языками программирования были машинные
языки, представляющие собой системы команд для конкретных ЭВМ. С
развитием вычислительной техники появились более сложные языки
программирования, ориентированные на решение различных задач: обработка
экономической информации (КОБОЛ), инженерные и научные расчеты (Фортран),
обучение программированию (алгол-60, Паскаль), моделирование (сленг,
стимула) и другие.
Важный аспект построения моделей заключается в том, что модель должна
быть в приблизительном смысле заменителем реального положения вещей,
реальной системы. Следовательно, речь идет не только об уменьшении
избыточности запоминания информации, но и о такой семантике и о таком
синтаксисе модели, при котором ее поведение оказывается сравнимым с
поведением реального объекта. Так представляется роль модели как замены
объекта, по крайней мере, при моделировании реальных типов поведения. При
постановке других целей моделирования роль модели, заключающаяся в том,
чтобы быть в какой-то степени адекватной исходному объекту, должна
пониматься аналогично.
Оптимизация описывает аспект управления или аспект синтеза. Поскольку
речь идет о том, чтобы «не объяснить мир, но изменить его», то едва ли
можно, теоретико-познавательную сторону моделирования отделить от функции
управления, присущей модели, поэтому в духе компромисса на практике
иногда приходится отказываться от возможного выигрыша в знаниях в пользу
большей целенаправленности модели. Модель, построенная на основе
системного анализа, должна быть существенным вспомогательным средством
для отыскания решений.
При практических применениях мы, как правило, ограничены в средствах,
которые можно затратить на моделирование и оптимизацию; следовательно,
автоматически сталкиваемся с требованиями построения моделей при
минимальных затратах.
Для теории характерно, что ее положения получаются в результате
обобщения частных фактов, а достоверность проверяется путем применения
теории к случаям, которые хотя и охватываются теорией, однако не
принадлежат области источников ее начальных положений. Факты, которые по
области своей значимости не связаны с этими источниками, являются чисто
эмпирическими и не могут рассматриваться как относящиеся к теории.
Издревле люди занимались моделированием. Возьмем к примеру, Леонардо да
Винчи. Как ученый и инженер Леонардо да Винчи обогатил проницательными
наблюдениями и догадками почти все области знания того времени,
рассматривая свои заметки и рисунки как наброски к гигантской
натурфилософской энциклопедии. Он был ярким представителем нового,
основанного на эксперименте естествознания. Особое внимание Леонардо
уделял механике, называя ее «раем математических наук» и видя в ней ключ
к тайнам мироздания; он попытался определить коэффициенты трения
скольжения, изучал сопротивление материалов, увлеченно занимался
гидравликой. Страсть к моделированию приводила Леонардо к поразительным
техническим предвидениям, намного опережавших эпоху: таковы наброски
проектов металлургических печей и прокатных станов, ткацких станков,
печатных, деревообрабатывающих и прочих машин, подводной лодки и танка, а
также разработанные после тщательного изучения полета птиц конструкции
летальных аппаратов и парашюта.
Следующим примером моделирования может служить разработка модели Земли.В
первой половине 20 века норвежские, бельгийские, французские и русские
путешественники обследовали приполярные области, составили их описания и
карты. В 1909 А. Мохорович выделил планетарную грницу раздела, являющуюся
подошвой земной коры. В 1916 сейсмолог Б.Б. Голицын зафиксировал границу
верхней мантии, а в 1926 Б. Гутенберг установил в ней наличие
сейсмического волновода. Этот же ученый определил положение и глубину
границы между мантией Земли и ядром. В 1935 Ч. Рихтер ввел понятие
магнитуды землетрясения, разработал совместно с Гутенбергом в 1941-45
шкалу Рихтера. Позднее на основе этих сейсмологических и гравиметрических
данных была разработана модель внутреннего строения Земли, которая
остается практически неизменной до наших дней. С 1980-90-х гг.
развивается геофизическая томография, с помощью которой построены
сейсмические разрезы нижней и верхней мантии, что в совокупности с
геотермическими и другими геофизическими данными позволило осуществить
качественное и количественное моделирование мантийной конвекции
циркуляционного перемещения вещества мантии.
Запуски межпланетных космических аппаратов к Меркурию, Марсу, Венере, а
также к более отдаленным планетам позволили также углубить знания о
стоении и эволюции Земли на основе сравнительного изучения планет.
Полученные данные вместе со сведениями о структуре земной коры и
глубинных недр планеты послужили основой для разработки моделей развития
Земли, начиная с момента ее образования из протопланетного облака.
После второй мировой войны интенсивное развитие получила техническая
кибернетика. Одним из важнейших ее направлений стало построение моделей,
что в особенности проявилось благодаря разносторонней научной
деятельности ИФАК. Вследствие этого возникло ширко распространенное
убеждение, будто построение моделей по существу равнозначно
индентификации параметров в характеристиках определенных типов. Это
представление неверно.
Развитие кибернетики в последние годы, давшее, в частности, системный
подход к так называемым большим системам, который сильнее всего проявился
в многообразных попытках глобального моделирования, привело к существенно
более широкому пониманию моделирования.
При этом дело дошло до переосмысления источников модельных конструкций,
которые собственно существовали еще задолго до периода бурного развития
науки и техники. Оказалось, что с давних пор наиболее значительными
науками, занимающимися построением моделей, была физика, в частности
механика. Уже из традиционных подходов к описанию физических объектов
можно получить существенные представления о построении моделей. Конечно,
методология такого построения развилась далеко за пределы известного и
обычного для физики.
В общем и целом, построение моделей и их оптимизация – главные
направления междисциплинарных работ, дающие возможность надежного
описания систем и процессов. Они являются предпосылками для
целенаправленного использования их свойств в интересах общества.
Модели способствуют плодотворному производству во всех сферах жизни так
как:
- сокращают издержки;
- показывают несостоятельность некоторых идей;
- экономят время ( модели доводятся до совершенства и лишь затем на их
основе начинается производство, строительство и т.д.)
Моделирование – одна из основных категорий научного познания, на идее
моделирования базируется любой, в частности теоретический или
практический, метод научного познания.



Список использованной литературы:

1. Вернадский В.И. Избранные трактаты по истории науки. М., 1981
2. Энциклопедии «Кирилл и Мефодий» 1998-2000:
- Универсальная
- Энциклопедия персонального компьютера
3. Заворотов В.А. От идеи до модели. М., 1990





Новинки рефератов ::

Реферат: Социальные проблемы развития российского общества (Социология)


Реферат: Анализ себестоимости продукции и путей ее снижения (Бухгалтерский учет)


Реферат: Прямые испанские инвестиции в экономику России (Международные отношения)


Реферат: Шпоры к экзамену по Военной подготовке (Военная кафедра)


Реферат: Радиолокационная Головка Самонаведения (Радиоэлектроника)


Реферат: Гигиена (Спорт)


Реферат: Государственная молодежная политика как важнейшее направление деятельности государства (Социология)


Реферат: Основы современного социального управления (Социология)


Реферат: Three Waves of Alvin Toffler. The Basic Points (Иностранные языки)


Реферат: Вода. Тяжелая вода (Химия)


Реферат: Управление качеством продукции (Менеджмент)


Реферат: Англия 1945-1993 гг. (История)


Реферат: Цены во внешнеэкономической деятельности предприятия (Предпринимательство)


Реферат: География морского транспорта России (География)


Реферат: Учет и аудит основных средств и нематериальных активов на железнодорожном транспорте. (Бухгалтерский учет)


Реферат: Финансовый менеджмент (Финансы)


Реферат: Раздел дипломной работы (Безопасность жизнедеятельности)


Реферат: Тоталитарный политический режим (Политология)


Реферат: Смешанные формы правления в Древнем Риме и Древней Греции (История)


Реферат: Екатерина Романовна Дашкова- издатель и публицист (Исторические личности)



Copyright © GeoRUS, Геологические сайты альтруист