GeoSELECT.ru



Физика / Реферат: Галилео Галилей (Физика)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Галилео Галилей (Физика)


Галилео Галилей
(1564 – 1642)

Несмотря на то, что зачатки экспериментально-математического метода
исследования природы можно найти еще у Леонардо да Винчи, его
основоположником считается великий итальянский ученый Галилео Галилей
(1564 - 1642), который оставил развернутое изложение этого метода и
сформулировал важнейшие принципы механического мира.
Галилей родился в семье обедневшего дворянина в городе Пизе
(недалеко от Флоренции). Убедившись в бесплодии схоластической учености,
он углубился в математические науки. Став в дальнейшем профессором
математики Падуанского университета, ученый развернул активную научно-
исследовательскую деятельность, особенно в области механики и астрономии.
Для торжества теории Коперника и идей, высказанных Джордано Бруно,
огромное значение имели астрономические открытия, сделанные Галилеем с
помощью сконструированного им телескопа. Он обнаружил кратеры и хребты на
Луне (в его представлении - "горы" и "моря"), разглядел бесчисленные,
скопления звезд, образующих Млечный Путь, увидел спутники, Юпитера,
разглядел пятна на Солнце и т. д. Благодаря этим открытиям Галилей стяжал
всеевропейскую славу "Колумба неба". Астрономические открытия Галилея, в
первую очередь спутников Юпитера, стали наглядным доказательством
истинности гелиоцентрической теории Коперника, а явления, наблюдаемые на
Луне, представлявшейся планетой, вполне аналогичной Земле, и пятна на
Солнце подтверждали идею Бруно о физической однородности Земли и неба.
Открытие же звездного состава Млечного Пути явилось косвенным
доказательством бесчисленности миров во Вселенной.
Указанные открытия Галилея положили начало его ожесточенной полемике
со схоластиками и церковниками, отстаивавшими аристотелевско-птолемеевскую
картину мира. Если до сих пор католическая церковь по изложенным выше
причинам была вынуждена терпеть воззрения тех ученых, которые признавали
теорию Коперника в качестве одной из гипотез, а ее идеологи считали, что
доказать эту гипотезу невозможно, то теперь, когда эти доказательства
появились, римская церковь принимает решение запретить пропаганду взглядов
Коперника даже в качестве гипотезы, а сама книга Коперника вносится в
"Список запрещенных книг" (1616 г.). Все это поставило деятельность
Галилея под удар, но он продолжал работать над совершенствованием
доказательств истинности теории Коперника. В этом отношении огромную роль
сыграли работы Галилея и в области механики. Господствовавшая в эту эпоху
схоластическая физика, основавшаяся на поверхностных наблюдениях и
умозрительных выкладках, была засорена представлениями о движении вещей в
соответствии с их "природой" и целью, о естественной тяжести и лег кости
тел, о "боязни пустоты", о совершенстве кругового движения и другими
ненаучными домыслами, которые сплелись в запутанный узел с религиозными
догматами и библейскими мифами. Галилей путем ряда блестящих экспериментов
постепенно распутал его и создал важнейшую отрасль механики динамику, т. е.
учение о движении тел.
Занимаясь вопросами механики, Галилей открыл ряд ее фундаментальных
законов: пропорциональность пути, проходимого падающими телами, квадратам
времени их падения; равенство скоростей падения тел различного веса в
безвоздушной среде (вопреки мнению Аристотеля и схоластиков о
пропорциональности скорости падения тел их весу); сохранение
прямолинейного равномерного движения, сообщенного какому-либо телу, до тех
пор, пока какое-либо внешнее воздействие не прекратит его (что впоследствии
получило название закона инерции), и др.
Философское значение законов механики, открытых Галилеем было
громадным. Открытие законов механики Галилеем, давшим строго
математическую трактовку понятия этих законов и освободившими понимание их
от элементов антропоморфизма, ставило это понимание на физическую почву.
Тем самым впервые в истории развитие человеческого познания понятие закона
природы приобретало строго научное содержание.
Законы механики были применены Галилеем и для доказательства теории
Коперника, которая была непонятна большинству людей, не знавших этих
законов. Например, с точки зрения "здравого рассудка" кажется совершенно
естественным, что при движении Земли в мировом пространстве должен
возникнуть сильнейший вихрь, сметающий все с ее поверхности. В этом и
состоял один из самых "сильных" аргументов против теории Коперника. Галилей
же установил, что равномерное движение тела нисколько не отражается на
процессах, совершающихся на его поверхности. Например, на движущемся
корабле падение тел происходит так же, как и на неподвижном. По этому
обнаружить равномерное и прямолинейное движение Земли на самой Земле.
Все эти идеи великий ученый сформулировал в "Диалоге о двух
главнейших системах мира птолемеевой и коперниковой" (1632), научно
доказавшем истинность теории Коперника. Эта книга послу жила поводом для
обвинения Галилея со стороны католической церкви. Ученый был привлечен к
суду римской инквизицией; в 1633 г. состоялся его знаменитый процесс, на
котором он был вынужден формально отречься от своих "заблуждений". Его
книга была запрещена, однако приостановить дальнейшее торжество идей
Коперника, Бруно и Галилея церковь уже не могла. Итальянский мыслитель вы
шел победителем.
Используя теорию двойственной истины, Галилей решительно отделял
науку от религии. Он утверждал, например, что природа должна изучаться с
помощью математики и опыта, а не с помощью Библии. В познании природы
человек должен руководствоваться только собственным разумом. Так Галилей
пришел к выводу о возможности безграничного познания природы.
Исходя из собственного гороскопа, Галилей предвидел у себя тяжелую
глазную болезнь, которая действительно поразила его в зрелые годы. Ослеп он
в 1637 г.
Похоронен Галилей в Santa Croce. Счастливая земля, которая видела
таких экстраординарных людей в искусстве, политике, науке, как
Микеланджело, Данте, Галилей, Маккиавелли. Галилей умер в поселке в
окрестностях Флоренции. Странная вещь! 9 января 1642 года, в день, когда
умер Галилей, родился Ньютон.




Реферат на тему: Гамма излучение

Сдавался в русской школе на Кипре ( оценка 5- )
Реферат
по теме
Гамма-излучение.
Гамма-излучение – это коротковолновое электромагнитное излучение. На шкале
электромагнитных волн оно граничит с жестким рентгеновским излучением,
занимая область более высоких частот. Гамма-излучение обладает чрезвычайно
малой длинной волны (?(10 -8 см) и вследствие этого ярко выраженными
корпускулярными свойствами, т.е. ведет себя подобно потоку частиц – гамма
квантов, или фотонов, с энергией h? (? – частота излучения, h – Планка
постоянная).
Гамма- излучение возникает при распадах радиоактивных ядер, элементарных
частиц, при аннигиляции пар частицы-античастица, а также при прохождении
быстрых заряженных частиц через вещество.
Гамма-излучение, сопровождающее распад радиоактивных ядер, испускается при
переходах ядра из более возбужденного энергетического состояния в менее
возбужденное или в основное. Энергия ? – кванта равна разности энергий ??
состояний, между которыми происходит переход.
Возбужденное состояние
Е2


h?


Основное состояние ядра Е1
Испускание ядром ?-кванта не влечет за собой изменения атомного номера или
массового числа, в отличие от других видов радиоактивных превращений.
Ширина линий гамма-излучений чрезвычайно мала (~10-2 эв). Поскольку
расстояние между уровнями во много раз больше ширины линий, спектр гамма-
излучения является линейчатым, т.е. состоит из ряда дискретных линий.
Изучение спектров гамма-излучения позволяет установить энергии возбужденных
состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах
некоторых элементарных частиц. Так, при распаде покоящегося ?0- мезона
возникает гамма-излучение с энергией ~70Мэв. Гамма-излучение от распада
элементарных частиц также образует линейчатый спектр. Однако испытывающие
распад элементарные частицы часто движутся со скоростями, сравнимыми с
скоростью света. Вследствие этого возникает доплеровское уширение линии и
спектр гамма-излучения оказывается размытым в широком интервале энергий.
Гамма-излучение, образующееся при прохождении быстрых заряженных частиц
через вещество, вызывается их торможением к кулоновском поле атомных ядер
вещества. Тормозное гамма –излучение, также как и тормозное рентгеноовское
излучение, характерезуется сплошным спектром, верхняя граница которого
совпадает с энергией заряженной частицы, например электрона. В ускорителях
заряженных частиц получают тормозное гамма- излучение с максимальной
энергией до нескольких десятков Гэв.
В межзвёзном пространстве гамма-излучение может возникать в результате
соударений квантов более мягкого длинноволнового, электромагнитного
излучения, например света, с электронами, ускоренными магнитными полями
космических объектов. При этом быстрый электрон передает свою энергию
электромагнитному излучению и видимый свет превращается в более жесткое
гамма-излучение.
Аналогичное явление может иметь место в земных условиях при столновении
электронов большой энергии, получаемых на ускорителях, с фотонами видимого
света в интенсивных пучках света, создаваемых лазерами. Электрон передает
энергию световому фотону, который превращается в ?-квант. Таким образом,
можно на практике превращать отдельные фотоны света в кванты гамма-
излучения высокой энергии.
Гамма-излучение обладает большой проникающей способностью, т.е. может
проникать сквозь большие толщи вещества без заметного ослабления. Основные
процессы, происходящие при взаимодействии гамма-излучения с веществом, -
фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-
эффект) и образавание пар электрон-позитрон. При фотоэффекте происходит
поглощение ?-кванта одним из электронов атома, причём энергия ?-кванта
преобразуется ( за вычетом энергии связи электрона в атоме ) в кинетическую
энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта
прямо пропорциональна пятой степени атомного номера элемента и обратно
пропорциональна 3-й степени энергии гамма-излучения. Таким образом,
фотоэффект преобладает в области малых энергии ?-квантов ( (100 кэв ) на
тяжелых элементах ( Pb, U).
При комптон-эффекте происходит рассеяние ?-кванта на одном из электронов,
слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте ?-
квант не исчезает, а лишь изменяет энергию ( длинну волны ) и направление
распрастранения. Узкий пучок гамма-лучей в результате комптон-эффекта
становится более широким, а само излучение - более мягким (длинноволновым
). Интенсивность комптоновского рассеяния пропорциональна числу электронов
в 1см3 вещества, и поэтому вероятность этого процесса пропорциональна
атомному номеру вещества. Комптон-эффект становится заметным в веществах с
малым атомным номером и при энергиях гамма-излучения, превышвют энергию
связи электронов в атомах. Так, в случае Pb вероятность комптоновского
рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии
~ 0,5 Мэв. В случае Al комптон-эффект преобладает при гораздо меньших
энергиях.
Если жнергия ?-кванта превышает 1,02 Мэв, становится возможным процесс
образования электрон-позитроновых пар в электрическом поле ядер.
Вероятность образования пар пропорциональна квадрату атомного номера и
увеличивается с ростом h?. Поэтому при h? ~10 Мэв основным процессом в
любом веществе оказывается образование пар.



100



50



0
0,1 0,5 1 2 5 10
50
Энергия ?-лучей ( Мэв )

Обратный процесс аннигиляция электрон-позитронной пары является источником
гамма-излучения.
Для характеристики ослабления гамма-излучения в веществе обычно пользуются
коэффициентом поглощения, который показывает, на какой толщине Х
поглотителя интенсивность I0 падающего пучка гамма-излучение ослабляется в
е раз:
I=I0e-?0x
Здесь ?0 – линейный коэффициент поглощения гамма-излучения. Иногда вводят
массовый коэффициент поглощения, равный отношению ?0 к плотности
поглотителя.
Экспоненциальный закон ослабления гамма-излучения справедлив для узкого
направления пучка гамма-лучей, когда любой процесс, как поглощения, так и
рассеяния, выводит гамма-излучение из состава первичного пучка. Однако при
высоких энергиях процесс прохождения гамма-излучения через вещество
значительно усложняется. Вторичные электроны и позитроны обладают большой
энергией и поэтому могут, в свою очередь, создавать гамма-излучение
благодаря процессам торможения и аннигиляциии. Таким образом в веществе
возникает ряд чередующихся поколений вторичного гамма-излучения, электронов
и позитронов, то есть происходит развитие каскадного ливня. Число вторичных
частиц в таком ливне сначала возрастает с толщиной, достигая максимума.
Однако затем процессы поглощения начинают преобладать над процессами
размножения частиц и ливень затухает. Способность гамма-излучения развивать
ливни зависит от соотношения между его энергией и так называемой
критической энергией, после которой ливень в данном веществе практически
теряет способность развиваться.
Для изменения энергии гамма-излучения в эксперементальной физике
применяются гамма-спектрометры различных типов, основанные большей частью
на измерении энергии вторичных электронов. Основные типы спектрометров
гамма-излучения: магнитные, сцинтиляционные, полупроводниковые, кристал-
дифракционные.
Изучение спектров ядерных гамма-излучений дает важную информацию о
структуре ядер. Наблюдение эффектов, связанных с влиянием внешней среды на
свойства ядерного гамма-излучения, используется для изучения свойств
твёрдых тел.
Гамма-излучение находит применение в технике, например для обнаружения
дефектов в металлических деталях – гамма-дефектоскопия. В радиационной
химии гамма-излучение применяется для инициирования химических превращений,
например процессов полимеризации. Гамма-излучение используется в пищевой
промышленности для стерилизации продуктов питания. Основными источниками
гамма-излучения служат естественные и искусственные радиоактивные изотопы,
а также электронные ускорители.
Действие на организм гамма-излучения подобно действию других видов
ионизирующих излучений. Гамма-излучение может вызывать лучевое поражение
организма, вплоть до его гибели. Характер влияния гамма-излучения зависит
от энергии ?-квантов и пространственных особенностей облучения, например,
внешнее или внутреннее. Относительная биологическая эффективность гамма-
излучения составляет 0,7-0,9. В производственных условиях (хроническое
воздействие в малых дозах) относительная биологическая эффективность гамма-
излучения принята равной 1. Гамма-излучение используется в медицине для
лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных
препаратов. Гамма-излучение применяют также для получения мутаций с
последующим отбором хозяйственно-полезных форм. Так выводят
высокопродуктивные сорта микроорганизмов (например, для получения
антибиотиков ) и растений.
Современные возможности лучевой теропии расширились в первую очередь за
счёт средств и методов дистанционной гамма-теропии. Успехи дистанционной
гамма-теропии достигнуты в результате большой работы в области
использования мощных искусственных радиоактивных источников гамма-излучения
(кобальт-60, цезий-137), а также новых гамма-препаратов.
Большое значение дистанционной гамма-теропии объясняется также
сравнительной доступностью и удобствами использования гамма-аппаратов.
Последние, так же как и рентгеновские, конструируют для статического и
подвижного облучения. С помощью подвижного облучения стремятся создать
большую дозу в опухоли при рассредоточенном облучении здоровых тканей.
Осуществлены конструктивные усовершенствования гамма-аппаратов,
направленные на уменьшение полутени, улучшение гомогенизации полей,
использование фильтров жалюзи и поиски дополнительных возможностей защиты.
Использование ядерных излучений в растениеводстве открыло новые, широкие
возможности для изменения обмена веществ у сельскохозяйственных растений,
повышение их урожайности, ускорения развития и улучшения качества.
В результате первых исследований радиобиологов было установлено, что
ионизирующая радиация – мощный фактор воздействия на рост, развитие и обмен
веществ живых организмов. Под влиянием гамма-облучения у растений, животных
или микроорганизмов меняется слаженный обмен веществ, ускоряется или
замедляется (в зависимости от дозы) течение физиологических процессов,
наблюдаются сдвиги в росте, развитии, формировании урожая.
Следует особо отметить, что при гамма-облучении в семена не попадают
радиоактивные вещества. Облученные семена, как и выращенный из них урожай,
нерадиоактивны. Оптимальные дозы облучения только ускоряют нормальные
процессы, происходящие в растении, и поэтому совершенно необоснованны какие-
либо опасения и предостережения против использования в пищу урожая,
полученного из семян, подвергавшихся предпосевному облучению.
Ионизирующие излучения стали использовать для повышения сроков хранения
сельскохозяйственных продуктов и для уничтожения различных насекомых-
вредителей. Например, если зерно перед загрузкой в элеватор пропустить
через бункер, где установлен мощный источник радиации, то возможность
размножения насекомых-вредителей будет исключена и зерно сможет храниться
длительное время без каких-либо потерь. Само зерно как питательный продукт
не меняется при таких дозах облучения. Употребление его для корма четырех
поколений экспериментальных животных не вызвало каких бы то ни было
отклонений в росте, способности к размножению и других патологических
отклонений от нормы.







Новинки рефератов ::

Реферат: Галичина - соціокультурна, історична, політична частка України (История)


Реферат: Схема технологии возделывания озимой пшениы (Сельское хозяйство)


Реферат: Коллективизация в России (История)


Реферат: Понимание речи (Программирование)


Реферат: Технологический процесс механической обработки детали "Траверса", проект специального станочного приспособления для фрезерования паза детали, проект специального станочного приспособления для фрезерования контура детали, ... (Технология)


Реферат: Гражданско-правовая ответственность: понятие, особенности, виды, условия (контрольная по основам права) (Гражданское право и процесс)


Реферат: Социальная теория народничества (Социология)


Реферат: Олово (Химия)


Реферат: Гарвей (Биология)


Реферат: Особенности учета материальных ресурсов и малоценных и быстроизнашивающихся предметов в эксплуатации (Аудит)


Реферат: Гражданско-правовой договор: формы, виды, особенности заключения, изменения и расторжения (Гражданское право и процесс)


Реферат: Инвентаризация (Аудит)


Реферат: Административное задержание по новому КоАП РФ (Административное право)


Реферат: Формы реализации права (Теория государства и права)


Реферат: Брачный договор-контракт (Право)


Реферат: Старение на клеточном уровне (Биология)


Реферат: Статистическое изучение уровня затрат предприятия на производство продукции (Статистика)


Реферат: Использование кабинета для внеклассной работы по иностранному языку (Педагогика)


Реферат: Интеллектуальная собственность: понятие, сущность, оценка (Гражданское право и процесс)


Реферат: Общие вопросы организации бизнеса (Предпринимательство)



Copyright © GeoRUS, Геологические сайты альтруист