GeoSELECT.ru



Биология / Реферат: Биосинтез ДНК (Биология)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Биосинтез ДНК (Биология)



Cпособность клеток поддерживать высокую упорядоченность своей организации
зависит от генетической информации, которая сохраняется в форме
дезоксирибонуклеиновой кислоты (ДНК). ДНК - это вещество, из которого
состоят гены. Размножение живых организмов, передача наследственных свойств
из поколения в поколение и развитие многоклеточного организма из
оплодотворенной яйцеклетки возможны потому, что ДНК способна к
самовоспроизведению. Сам процесс самовоспроизведения ДНК называется
репликацией. Иногда используют также название-синоним - редупликация.

Матричный синтез ДНК

Как известно, генетическая информация записана в цепи ДНК в виде
последовательности нуклеотидных остатков, содержащих одно из четырех
гетероциклических оснований: аденин (A), гуанин (G), цитозин (C) и тимин
(T). Предложенная Дж. Уотсоном и Ф. Криком в 1953 году модель строения ДНК
в форме регулярной двойной спирали сразу же позволила понять принцип
удвоения ДНК. Информационное содержание обеих цепей ДНК идентично, так как
каждая из них содержит последовательность нуклеотидов, строго
соответствующую последовательности другой цепи. Это соответствие
достигается благодаря наличию водородных связей между направленными
навстречу друг другу основаниями двух цепей - попарно G и C или A и T.
Описывая это свойство двойной спирали, молекулярные биологи говорят, что
цепи ДНК комплементарны за счет образования уотсон-криковских пар GРC и
AРT. Поскольку две цепи имеют противоположную направленность, их называют
антипараллельными. Легко представить, что удвоение ДНК происходит
вследствие того, что цепи расходятся, а потом каждая цепь служит матрицей,
на которой собирается комплементарная ей новая цепь ДНК‚ результате
образуются две дочерние, двуспиральные, неотличимые по строению от
родительской ДНК молекулы. Каждая из них состоит из одной цепи исходной
родительской молекулы ДНК и одной вновь синтезированной цепи. Такой
механизм репликации ДНК, при котором от одного поколения к другому
передается одна из двух цепей, составляющих родительскую молекулу ДНК,
получил название полуконсервативного и был экспериментально доказан в 1958
году М. Мезельсоном и Ф. Сталь.
Кроме того, ситезу ДНК характерны такие свойства, как антипараллельность и
униполярность. Каждая цепь ДНК имеет определенную ориентацию. Один конец
несет гидроксильную группу (ОН), присоединенную к 3'-углероду в сахаре
дезоксирибозе, на другом конце цепи находится остаток фосфорной кислоты в
5'-положении сахара. Две комплементарные цепи в молекуле ДНК ориентированы
в противоположных направлениях - антипараллельно (при параллельной
ориентации напротив 3'-конца одной цепи находился бы 3'-конец другой).
Ферменты, синтезирующие новые нити ДНК, называемые ДНК-полимеразами, могут
передвигаться вдоль матричных цепей лишь в одном направлении - от их 3'-
концов к 5'-концам. ?ри этом синтез комплементарных нитей всегда ведется в
5' 3' направлении, то есть униполярно. Поэтому в процессе репликации
одновременный синтез новых цепей идет антипараллельно.
ДНК-полимеразы могут давать "задний ход", то есть двигаться в направлении
3' 5'. В том случае, когда последнее добавленное при синтезе нуклеотидное
звено оказалось некомплементарным нуклеотиду матричной цепи, оно будет
замещено комплементарным нуклеотидом. Отщепив "неправильный" нуклеотид, ДНК-
полимераза продолжает синтез в 5' 3' направлении. Такая способность к
исправлению ошибок получила название корректорской функции фермента (см.
ниже).

ДНК-полимеразы
В 1957 году А. Корнберг обнаружил у кишечной палочки фермент,
катализирующий процесс полимеризации ДНК из нуклеотидов; он был назван ДНК-
полимеразой. Затем ДНК-полимеразы выявили и в других организмах. Было
показано, что субстратами всех этих ферментов служат
дезоксирибонуклеозидтрифосфаты (дНТФ), полимеризующиеся на одноцепочечной
ДНК-матрице. ДНК-полимеразы последовательно наращивают одноцепочечную цепь
ДНК, шаг за шагом присоединяя к ней следующие звенья в направлении от 5-' к
3'-концу, причем выбор очередного дНТФ диктуется матрицей. Присоединение
каждого нового нуклеотидного остатка к 3'-концу растущей цепи
сопровождается гидролизом богатой энергией связи между первым и вторым
фосфатными остатками в дНТФ и отщеплением пирофосфата, что делает реакцию в
целом энергетически выгодной.
В клетках обычно присутствует несколько типов ДНК-полимераз, выполняющих
различные функции и имеющих разное строение: они могут быть построены из
различного количества белковых цепей (субъединиц), от одной до десятков.
Однако все они работают на любых последовательностях нуклеотидов матрицы;
задача этих ферментов- сделать точную копию каждой матрицы.

Точность синтеза ДНК и механизм коррекции
Генетический материал живых организмов имеет огромные размеры и
реплицируется с высокой точностью. В среднем в процессе воспроизведения
генома млекопитающего, состоящего из ДНК длиной 3 млрд пар нуклеотидов,
возникает не более трех ошибок. При этом ДНК синтезируется чрезвычайно
быстро (скорость ее полимеризации колеблется в пределах от 500
нуклеотидов/с у бактерий до 50 нуклеотидов/с у млекопитающих). Высокая
точность репликации, наряду с ее высокой скоростью, обеспечивается наличием
специальных механизмов, осуществляющих коррекцию, то есть устраняющих
ошибки. Суть механизма коррекции заключается в том, что ДНК-полимеразы
дважды проверяют соответствие каждого нуклеотида матрице: один раз перед
включением его в состав растущей цепи и второй раз перед тем, как включить
следующий нуклеотид. Очередная фосфодиэфирная связь синтезируется лишь в
том случае, если последний (3'-концевой) нуклеотид растущей цепи ДНК
образовал правильную уотсон-криковскую пару с соответствующим нуклеотидом
матрицы. Если же на предыдущей стадии реакции произошло ошибочное
спаривание оснований, то дальнейшая полимеризация останавливается до тех
пор, пока ошибка не будет исправлена. Для этого фермент перемещается в
обратном направлении и вырезает последнее добавленное звено, после чего его
место может занять правильный нуклеотидпредшественник. Иными словами,
многие (но не все) ДНК-полимеразы обладают, помимо 5'-3'-синтетической
активности, еще и 3'-гидролизующей активностью, которая обеспечивает
удаление ошибочно спаренных с матрицей нуклеотидов.

Основные принципы репликации
Основные правила, в соответствии с которыми происходит репликация, были
выяснены в опытах с бактериями, однако они справедливы также и для высших
организмов.

Инициация цепей ДНК
ДНК-полимеразы не могут начинать синтеза ДНК на матрице, а способны только
добавлять новые дезоксирибонуклеотидные звенья к 3'-концу уже имеющейся
полинуклеотидной цепи. Такую заранее образованную цепь, к которой
добавляются нуклеотиды, называют затравкой. Короткую РНК- затравку
синтезирует из рибонуклеозидтрифосфатов фермент, не обладающий
корректирующей активностью и называемый ДНК-праймазой (от англ. primer -
затравка). Праймазная активность может принадлежать либо отдельному
ферменту, либо одной из субъединиц ДНК-полимеразы. Затравка,
синтезированная этим неточным ферментом, не умеющим исправлять ошибки,
отличается от остальной новосинтезированной цепи ДНК, поскольку состоит из
рибонуклеотидов, и далее может быть удалена.
Размер рибонуклеотидной затравки невелик (менее 20 нуклеотидов) в сравнении
с размером цепи ДНК, образуемой ДНК-полимеразой. Выполнившая свою функцию
РНК-затравка удаляется специальным ферментом, а образованная при этом брешь
заделывается ДНК-полимеразой, использующей в качестве затравки 3'-ОН-конец
соседнего фрагмента Оказаки (см ниже). Удаление крайних РНК-праймеров,
комплементарных 3'-концам обеих цепей линейной материнской молекулы ДНК,
приводит к тому, что дочерние цепи оказываются короче на 10-20 нуклеотидов
(у разных видов размер РНК-затравок различен). В этом заключается так
называемая "проблема недорепликации концов линейных молекул". В случае
репликации кольцевых бактериальных ДНК этой проблемы не существует, так как
первые по времени образованиЯ РНК-затравки удаляются ферментом, который
одновременно заполняет образующуюся брешь путем наращивания 3'-ОН-конца
растущей цепи ДНК, направленной в "хвост" удаляемому праймеру. Проблема
недорепликации 3'-концов линейных молекул ДНК решается эукариотическими
клетками с помощью специального фермента - теломеразы.
Работа теломеразы
В 1985 году он был обнаружен у равноресничной инфузории Tetrahymena
thermophila, а впоследствии - в дрожжах, растениях и животных, в том числе
в яичниках человека и иммортализованных(бессмертных) линиях раковых клеток
HeLa. Теломераза является ДНК-полимеразой, достраивающей 3'-концы линейных
молекул ДНК хромосом короткими (6-8 нуклеотидов) повторяющимися
последовательностями (у позвоночных TTAGGG). Согласно номенклатуре, этот
фермент называют ДНК- уклеотидилэкзотрансферазой или теломерной
терминальной трансферазой. Помимо белковой части теломераза содержит РНК,
выполняющую роль матрицы для наращивания ДНК повторами. Длина теломеразной
РНК колеблется от 150 нуклеотидов у простейших до 1400 нуклеотидов у
дрожжей, у человека - 450 нуклеотидов. Сам факт наличия в молекуле РНК
последовательности, по которой идет матричный синтез куска ДНК, позволяет
отнести теломеразу к своеобразной обратной транскриптазе, то есть ферменту,
способному вести синтез ДНК по матрице РНК.
В результате того что после каждой репликации дочерние цепи ДНК оказываются
короче материнских на размер первого РНК-праймера (10-20 нуклеотидов),
образуются выступающие однонитевые 3'-концы материнских цепей. Они-то и
узнаются теломеразой, которая последовательно наращивает материнские цепи
(у человека на сотни повторов), используя 3'-ОН-концы их в качестве
затравок, а РНК, входящую в состав фермента, в качестве матрицы.
Образующиеся длинные одноцепочечные концы, в свою очередь, служат матрицами
для синтеза дочерних цепей по традиционному репликативному механизму.
Постепенное укорочение ДНК хромосом во время репликации является одной из
теорий "старения" клеточных колоний. Еще в 1971 году отечественный ученый
А.М. Оловников в своей теории маргинотомии (от лат. marginalis -краевой,
tome - сечение) предположил, что это явление лежит в основе ограниченного
потенциала удвоения, наблюдаемого у нормальных соматических клеток,
растущих в культуре in vitro, так называемого "лимита Хейфлика".
Американский ученый Леонард Хейфлик в начале 60-х годов показал, что если
для культивирования взять клетки новорожденных детей, то они могут пройти
80-90 делений, в то время как соматические клетки от 70-летних делятся
только 20- 30 раз. Ограничение на число клеточных делений и называют
лимитом Хейфлика.

Расплетание двойной спирали ДНК
Поскольку синтез ДНК происходит на одноцепочечной матрице, ему должно
предшествовать обязательное разделение (хотя бы на время) двух цепей ДНК.
Исследования, проведенные в начале 60-х годов на реплицирующихся
хромосомах, выявили особую, четко ограниченную область репликации,
перемещающуюся вдоль родительской спирали ДНК и характеризующуюся местным
расхождением двух ее цепей. Эта активная область из-за своей Y-образной
формы была названа репликационной вилкой. Именно в ней ДНК-полимеразы
синтезируют дочерние молекулы ДНК. С помощью электронной микроскопии
реплицирующейся ДНК удалосьустановить, что область, которая уже
реплицирована, имеет вид глазка внутри нереплицировавшейся ДНК. Важно
отметить, что репликационный глазок образуется только в тех местах
молекулы, где находятся специфические нуклеотидные последовательности. Эти
последовательности, получившие название точек начала репликации, состоят
приблизительно из 300 нуклеотидов. В зависимости от того, в одном или в
двух направлениях происходит репликация (а это зависит от природы
организма), глазок содержит одну или две репликационные вилки.
Последовательное движение репликационной вилки приводит к расширению
глазка.
Двойная спираль ДНК весьма стабильна; для того чтобы она раскрылась,
необходимы особые белки. Специальные ферменты ДНК-хеликазы быстро движутся
по одиночной цепи ДНК, используя для перемещения энергию гидролиза ATФ.
Встречая на пути участок двойной спирали, они разрывают водородные связи
между основаниями, разделяют цепи и продвигают репликационную вилку. Вслед
за этим с одиночными цепями ДНК связываются специальные дестабилизирующие
спираль белки, которые не позволяют одиночным цепям ДНК сомкнуться. При
этом они не закрывают оснований ДНК, оставляя их доступными для спаривания.
Не следует забывать, что комплементарные цепи ДНК закручены друг вокруг
друга в спираль. Следовательно, для того чтобы репликационная вилка могла
продвигаться вперед, вся еще не удвоенная часть ДНК должна была бы очень
быстро вращаться. Эта топологическая проблема решается путем образования в
спирали своего рода "шарниров", позволяющих цепям ДНК раскрутиться.
Принадлежащие к особому классу белки, называемые ДНК-топоизомеразами,
вносят в цепь ДНК одноили двухцепочечные разрывы, позволяющие цепям ДНК
разделиться, а затем заделывают эти разрывы. Топоизомеразы участвуют также
в расцеплении зацепленных двухцепочечных колец, образующихся при репликации
кольцевых двунитевых ДНК. С помощью этих важных ферментов двойная спираль
ДНК в клетке может принимать "недокрученную" форму с меньшим числом витков;
в такой ДНК легче происходит расхождение двух цепей ДНК в репликационной
вилке.

Прерывистый синтез ДНК
Легко вообразить, что репликация происходит путем непрерывного роста
нуклеотида за нуклеотидом обеих новых цепей по мере перемещения
репликационной вилки; при этом, поскольку две цепи в спирали ДНК
антипараллельны, одна из дочерних цепей должна была бы расти в направлении
5'-3', а другая в направлении 3'-5'. В действительности, однако, оказалось,
что дочерние цепи растут только в направлении 5'-3', то есть всегда
удлиняется 3'-конец затравки, а матрица считывается ДНК-полимеразой в
направлении 3'-5'. Это утверждение на первый взгляд кажется несовместимым с
движением репликационной вилки в одном направлении, сопровождающемся
одновременным считыванием двух антипараллельных нитей. Разгадка секрета
заключается в том, что синтез ДНК происходит непрерывно только на одной из
матричной цепей. На второй матричной цепи ДНК синтезируется сравнительно
короткими фрагментами (длиной от 100до 1000 нуклеотидов, в зависимости от
вида), названными по имени обнаружившего их ученого фрагментами Оказаки).
Вновь образованная цепь, которая синтезируется непрерывно, называется
ведущей, а другая, собираемая из фрагментов Оказаки, отстающей. Синтез
каждого из этих фрагментов начинается с РНК-затравки. Через некоторое время
РНК-затравки удаляются, бреши застраиваются ДНК-полимеразой и фрагменты
сшиваются в одну непрерывную цепь ДНК специальным ферментом.

Кооперативное действие белков репликационной вилки.
До сих пор мы говорили об участии отдельных белков в репликации так, как
будто бы они работают независимо друг от друга. Между тем в
действительности большая часть этих белков объединена в крупный комплекс,
который быстро движется вдоль ДНК и согласованно осуществляет процесс
репликации с высокой точностью. Этот комплекс сравнивают с крошечной
"швейной машиной" : "деталями" его служат отдельные белки, а источником
энергии - реакция гидролиза нуклеозидтрифос фатов. Спираль расплетается ДНК-
хеликазой; этому процессу помогают ДНК- топоизомераза, раскручивающая цепи
ДНК, и множество молекул дестабилизирующего белка, связывающихся с обеими
одиночными цепями ДНК. В области вилки действуют две ДНК-полимеразы - на
ведущей и отстающей цепи. На ведущей цепи ДНК-полимераза работает
непрерывно, а на отстающей фермент время от времени прерывает и вновь
возобновляет свою работу, используя короткие РНК-затравки, синтезируемые
ДНК-праймазой. Молекула ДНК-праймазы непосредственно связана с ДНК-
хеликазой, образуя структуру, называемую праймосомой. Праймосома движется в
направлении раскрывания репликационной вилки и по ходу движения синтезирует
РНК-затравку для фрагментов Оказаки. В этом же направлении движется ДНК-
полимераза ведущей цепи и, хотя на первый взгляд это трудно представить,
ДНК-полимераза отстающей цепи. Для этого, как полагают, последня
накладывает цепь ДНК, которая служит ей матрицей, саму на себя, что и
обеспечивает разворот ДНК-полимеразы отстающей цепи на 180 градусов.
Согласованное движение двух ДНК-полимераз обеспечивает координированную
репликацию обеих нитей. Таким образом, в репликационной вилке одновременно
работают около двадцати разных белков (из которых мы назвали только часть),
осуществляя сложный, высокоупорядоченный и энергоемкий процесс.

Согласованность процессов репликации ДНК и клоеточного деления
Эукариотическая клетка перед каждым делением должна синтезировать копии
всех своих хромосом. Репликация ДНК эукариотической хромосомы
осуществляется посредством разделени хромосомы на множество отдельных
репликонов. Такие репликоны активируются не все одновременно, однако
клеточному делению должна предшествовать обязательная однократная
репликация каждого из них. Из сказанного ясно, что по хромосоме эукариот в
каждый момент времени может двигаться независимо друг от друга множество
репликационных вилок. Остановка продвижения вилки происходит только при
столкновении с другой вилкой, движущейся в противоположном направлении, или
по достижении конца хромосомы. В результате вся ДНК хромосо мы в короткий
срок оказывается реплицированной. После сборки на молекуле ДНК хромосомных
белков каждая пара хромосом в процессе митоза упорядоченно разделяется по
дочерним клеткам.

Выводы
Процесс репликации ДНК согласован с клеточным делением и требуетсовместного
действия многих белков. В нем участвуют:
1. ДНК-хеликаза и дестабилизирующие белки; они расплетают двойную спираль
родительской ДНК и формируют репликационную вилку.
2. ДНК-полимеразы, которые катализируют синтез полинуклеотидной цепи ДНК в
направлении 3'-5, копируя в репликационной вилке матрицу с высокой степенью
точности. Поскольку две цепи двойной спирали ДНК антипараллельны, в
направлении 5'-3' непрерывно синтезируется лишь одна из двух цепей,
ведущая; другая цепь, отстающа, синтезируется в виде коротких фрагментов
Оказаки. ДНК-полимераза способна к исправлению собственных ошибок, но не
может самостоятельно начать синтез новой цепи.
3. ДНК-праймаза, которая катализирует короткие молекулы РНК-затравки.
Впоследствии фрагменты РНК удаляются - их заменяет ДНК.
4.Теломераза, заканчивающая построение недорепликацированых 3'-концов
линейных молекул ДНК.
5. ДНК-топоизомеразы, помогающие решить проблемы кручения и спутывания
спирали ДНК.
6. Инициаторные белки, связывающиеся в точке начала репликации и
способствующие образованию нового репликационного глазка с одной или двумя
вилками. В каждой из вилок вслед за инициаторными белками к расплетенной
ДНК сначала присоединяется белковый комплекс, состоящий из ДНК-хеликазы и
ДНК-праймазы (праймосома).
Затем к праймосоме добавляются другие белки и возникает "репликационная
машина", которая и осуществляет синтез ДНК.

Литература
1. О. О. Фаворова. Сохранение ДНК в ряду популяций: репликация ДНК.
Соросовский образовательный журнал, 1996 г.
2. Г.М. Дымшиц. Проблема раепликации концов линейных молекул и теломераза.
Соросовский образовательный журнал, 2000 г.




Реферат на тему: Биосфера
План.


|I.|Характеристика и состав биосферы. |стр.2 |
|II|В.И.Вернадский о биосфере и “живом веществе”. |стр.4 |
|. | | |
|II|Биогенная миграция химических элементов и биогеохимические |стр.7 |
|I.|принципы. | |
|IV|Биосфера и человек. Ноосфера. |стр.11|
|. | | |
|V.|Роль человеческого фактора в развитии биосферы. |стр.15|
| |таблица |стр.12|
| |Использованная литература |стр.17|



I. Характеристика и состав биосферы.

В буквальном переводе термин “биосфера” обозначет сферу жизни и в
таком смысле он впервые был введен в науку в 1875 г. австрийским геологом и
палеонтологом Эдуардом Зюссом (1831 – 1914). Однако задолго до этого под
другими названиями, в частности "пространство жизни", "картина природы",
"живая оболочка Земли" и т.п., его содержание рассматривалось многими
другими естествоиспытателями.
Первоначально под всеми этими терминами подразумевалась только
совокупность живых организмов, обитающих на нашей планете, хотя иногда и
указывалась их связь с географическими, геологическими и космическими
процессами, но при этом скорее обращалось внимание на зависимость живой
природы от сил и веществ неорганической природы. Даже автор самого термина
"биосфера" Э.Зюсс в своей книге "Лик Земли", опубликованной спустя почти
тридцать лет после введения термина (1909 г.), не замечал обратного
воздействия биосферы и определял ее как "совокупность организмов,
ограниченную в пространстве и во времени и обитаюшую на поверхности Земли".
Первым из биологов, который ясно указал на огромную роль живых
организмов в образовании земной коры, был Ж.Б.Ламарк (1744 – 1829). Он
подчеркивал, что все вещества, находящиеся на поверхности земного шара и
образующие его кору, сформировались благодаря деятельности живых
организмов.
Факты и положения о биосфере накапливались постепенно в связи с
развитием ботаники, почвоведения, географии растений и других
преимущественно биологических наук, а также геологических дисциплин. Те
элементы знания, которые стали необходимыми для понимания биосферы в целом,
оказались связанными с возникновением экологии, науки, которая изучает
взаимоотношения организмов и окружающей среды. Биосфера является
определенной природной системой, а ее существование в первую очередь
выражается в круговороте энергии и веществ при участии живых организмов.
Очень важным для понимания биосферы было установление немецким
физиологом Пфефером (1845 – 1920) трех способов питания живых организмов:
автотрофное – построение организма за счет использования веществ
неорганической природы;
гетеротрофное – строение организма за счет использования низкомолекулярных
органических соединений;
миксотрофное – смешанный тип построения организма (автотрофно-
гетеротрофный).
Биосфера (в современном понимании) – своеобразная оболочка Земли,
содержащая всю совокупность живых организмов и ту часть вещества планеты,
которая находится в непрерывном обмене с этими организмами.
Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю
часть литосферы.
Атмосфера – наиболее легкая оболочка Земли, которая граничит с космическим
пространством; через атмосферу осуществляется обмен вещества и энергии с
космосом.
Атмосфера имеет несколько слоев:
тропосфера – нижний слой, примыкающий к поверхности Земли (высота 9–17 км).
В нем состредоточено около 80% газового состава атмосферы и весь водяной
пар;
стратосфера;
ноносфера – там “живое вещество” отсутствует.
Преобладающие элементы химического состава атмосферы: N2 (78%), O2 (21%),
CO2 (0,03%).
Гидросфера – водная оболочка Земли. В следствие высокой подвижности вода
проникает повсеместно в различные природные образования, даже наиболее
чистые атмосферные воды содержат от 10 до 50 мгр/л растворимых веществ.
Преобладающие элементы химического состава гидросферы: Na+, Mg2+, Ca2+,
Cl–, S, C. Концентрация того или иного элемента в воде еще ничего не
говорит о том, насколько он важен для растительных и животных организмов,
обитающих в ней. В этом отношении ведущая роль принадлежит N, P, Si,
которые усваиваются живыми организмами. Главной особенностью океанической
воды является то, что основные ионы характеризуются постоянным соотношением
во всем объеме мирового океана.
Литосфера – внешняя твердая оболочка Земли, состоящая из осадочных и
магматических пород. В настоящее время земной корой принято считать верхний
слой твердого тела планеты, расположенный выше сейсмической границы
Мохоровичича. Поверхностный слой литосферы, в котором осуществляется
взаимодействие живой материи с минеральной (неорганической), представляет
собой почву. Остатки организмов после разложения переходят в гумус
(плодородную часть почвы). Составными частями почвы служат минералы,
органические вещества, живые организмы, вода, газы.
Преобладающие элементы химического состава литосферы: O, Si, Al, Fe, Ca,
Mg, Na, K.
Ведущую роль выполняет кислород, на долю которого приходится половина
массы земной коры и 92% ее объема, однако кислород прочно связан с другими
элементами в главных породообразующих минералах. Т.о. в количественном
отношении земная кора – это “царство” кислорода, химически связанного в
ходе геологического развития земной коры.
Постепенно идея о тесной взаимосвязи между живой и неживой природой,
об обратном воздействии живых организмов и их систем на окружающие их
физические, химические и геологические факторы все настойчивее проникала в
сознание ученых и находила реализацию в их конкретных исследованиях. Этому
способствовали и перемены, произошедшие в общем подходе естествоиспытателей
к изучению природы. Они все больше убеждались в том, что обособленное
исследование явлений и процессов природы с позиций отдельных научных
дисциплин оказывается неадекватным. Поэтому на рубеже ХIХ – ХХ вв. в науку
все шире проникают идеи холистического, или целостного, подхода к изучению
природы, которые в наше время сформировались в системный метод ее изучения.
Результаты такого подхода незамедлительно сказались при исследовании
общих проблем воздействия биотических, или живых, факторов на абиотические,
или физические, условия. Так, оказалось, например, что состав морской воды
во многом определяется активностью морских организмов. Растения, живущие на
песчаной почве, значительно изменяют ее структуру. Живые организмы
контролируют даже состав нашей атмосферы. Число подобных примеров легко
увеличить, и все они свидетельствуют о наличии обратной связи между живой и
неживой природой, в результате которой живое вещество в значительной мере
меняет лик нашей Земли. Таким образом, биосферу нельзя рассматривать в
отрыве от неживой природы, от которой она, с одной стороны зависит, а с
другой – сама воздействует на нее. Поэтому перед естествоиспытателями
возникает задача – конкретно исследовать, каким образом и в какой мере
живое вещество влияет на физико-химические и геологические процессы,
происходящие на поверхности Земли и в земной коре. Только подобный подход
может дать ясное и глубокое представление о концепции биосферы. Такую
задачу как раз и поставил перед собой выдающийся российский ученый Владимир
Иванович Вернадский (1863 – 1945).



II. В.И.Вернадский о биосфере и “живом веществе”.

Центральным в этой концепции является понятие о живом веществе,
которое В.И.Вернадский определяет как совокупность живых организмов. Кроме
растений и животных, В.И.Вернадский включает сюда и человечество, влияние
которого на геохимические процессы отличается от воздействия остальных
живых существ, во-первых, своей интенсивностью, увеличивающейся с ходом
геологического времени; во-вторых, тем воздействием, какое деятельность
людей оказывает на остальное живое вещество.
Это воздействие сказывается прежде всего в создании многочисленных
новых видов культурных растений и домашних животных. Такие виды не
существовали раньше и без помощи человека либо погибают, либо превращаются
в дикие породы. Поэтому Вернадский рассматривает геохимическую работу
живого вещества в неразрывной связи животного, растительного царства и
культурного человечества как работу единого целого.
По мнению В.И.Вернадского, в прошлом не придавали значения двум
важным факторам, которые характеризуют живые тела и продукты их
жизнедеятельности:
открытию Пастера о преобладании оптически активных соединений, связанных с
дисимметричностью пространственной структуры молекул, как отличительной
особенности живых тел;
явно недооценивался вклад живых организмов в энергетику биосферы и их
влияние на неживые тела. Ведь в состав биосферы входит не только живое
вещество, но и разнообразные неживые тела, которые В.И.Вернадский называет
косными (атмосфера, горные породы, минералы и т. д.), а также и биокосные
тела, образованные из разнородных живых и косных тел (почвы, поверхностные
воды и т. п.). Хотя живое вещество по объему и весу составляет
незначительную часть биосферы, но оно играет основную роль в геологических
процессах, связанных с изменением облика нашей планеты.
Поскольку живое вещество является определяющим компонентом биосферы,
постольку можно утверждать, что оно может существовать и развиваться только
в рамках целостной системы биосферы. Не случайно поэтому В.И.Вернадский
считает, что живые организмы являются функцией биосферы и теснейшим образом
материально и энергетически с ней связаны, являются огромной геологической
силой, ее определяющей.[1]
Исходной основой существования биосферы и происходящих в ней
биогеохимических процессов является астрономическое положение нашей планеты
и в первую очередь ее расстояние от Солнца и наклон земной оси к эклиптике,
или к плоскости земной орбиты. Это пространственное расположение Земли
определяет в основном климат на планете, а последний в свою очередь –
жизненные циклы всех существующих на ней организмов. Солнце является
основным источником энергии биосферы и регулятором всех геологических,
химических и биологических процессов на нашей планете. Эту ее роль образно
выразил один из авторов закона сохранения и превращения энергии Юлиус Майер
(1814 – 1878), отметивший, что жизнь есть создание солнечного луча.
Решающее отличие живого вещества от косного заключается в следующем:
изменения и процессы в живом веществе происходят значительно быстрее, чем в
косных телах. Поэтому для характеристики изменений в живом веществе
используется понятие исторического, а в косных телах – геологического
времени. Для сравнения отметим, что секунда геологического времени
соответствует примерно ста тысячам лет исторического;
в ходе геологического времени возрастают мощь живого вещества и его
воздействие на косное вещество биосферы. Это воздействие, указывает В.И.
Вернадский, проявляется прежде всего "в непрерывном биогенном токе атомов
из живого вещества в косное вещество биосферы и обратно";
только в живом веществе происходят качественные изменения организмов в ходе
геологического времени. Процесс и механизмы этих изменений впервые нашли
объяснение в теории происхождения видов путем естественного отбора
Ч.Дарвина (1859 г.);
живые организмы изменяются в зависимости от изменения окружающей среды,
адаптируются к ней и, согласно теории Дарвина, именно постепенное
накопление таких изменений служит источником эволюции.
В.И.Вернадский высказывает предположение, что живое вещество,
возможно, имеет и свой процесс эволюции, проявляющийся в изменении с ходом
геологического времени, вне зависимости от изменения среды.[2]
Для подтверждения своей мысли он ссылается на непрерывный рост
центральной нервной системы животных и ее значение в биосфере, а также на
особую организованность самой биосферы. По его мнению, в упрощенной модели
эту организованность можно выразить так, что ни одна из точек биосферы "не
попадает в то же место, в ту же точку биосферы, в какой когда-нибудь была
раньше” [3]. В современных терминах это явление можно описать как
необратимость изменений, которые присущи любому процессу эволюции и
развития.
Непрерывный процесс эволюции, сопровождающийся появлением новых видов
организмов, оказывает воздействие на всю биосферу в целом, в том числе и на
природные биокосные тела, например, почвы, наземные и подземные воды и т.
д. Это подтверждается тем, что почвы и реки девона совсем другие, чем
третичной и тем более нашей эпохи. Таким образом, эволюция видов постепенно
распространяется и переходит на всю биосферу.
Поскольку эволюция и возникновение новых видов предполагают
существование своего начала, постольку закономерно возникает вопрос: а есть
ли такое начало у жизни? Если есть, то где его искать – на Земле или в
Космосе? Может ли возникнуть живое из неживого?
Над этими вопросами на протяжении столетий задумывались многие
религиозные деятели, представители искусства, философы и ученые.
В.И.Вернадский подробно рассматривает наиболее интересные точки зрения,
которые выдвигались выдающимися мыслителями разных эпох, и приходит к
выводу, что никакого убедительного ответа на эти вопросы пока не
существует. Сам он как ученый вначале придерживался эмпирического подхода к
решению указанных вопросов, когда утверждал, что многочисленные попытки
обнаружить в древних геологических слоях Земли следы присутствия каких-либо
переходных форм жизни не увенчались успехом. Во всяком случае некоторые
останки жизни были обнаружены даже в докембрийских слоях, насчитывающих 600
миллионов лет. Эти отрицательные результаты, по мнению В.И.Вернадского,
дают возможность высказать предположение, что жизнь как материя и энергия
существует во Вселенной вечно и поэтому не имеет своего начала. Но такое
предположение есть не больше, чем эмпирическое обобщение, основанное на
том, что следы живого вещества до сих пор не обнаружены в земных слоях.
Чтобы стать научной гипотезой, оно должно быть согласовано с другими
результатами научного познания, в том числе и с более широкими концепциями
естествознания и философии. Во всяком случае нельзя не считаться со
взглядами тех натуралистов и философов, которые защищали тезис о
возникновении живой материи из неживой, а в настоящее время даже выдвигают
достаточно обоснованные гипотезы и модели происхождения жизни.
Предположения относительно абиогенного, или неорганического,
происхождении жизни делались неоднократно еще в античную эпоху, например,
Аристотелем, который допускал возможность возникновения мелких организмов
из неорганического вещества. С возникновением экспериментального
естествознания и появлением таких наук, как геология, палеонтология и
биология, такая точка зрения подверглась критике как не обоснованная
эмпирическими фактами. Еще во второй половине XVII в. широкое
распространение получил принцип, провозглашенный известным флорентийским
врачом и натуралистом Ф.Реди, что все живое возникает из живого.
Утверждению этого принципа содействовали исследования знаменитого
английского физиолога Уильяма Гарвея (1578 – 1657), который считал, что
всякое животное происходит из яйца, хотя он и допускал возможность
возникновения жизни абиогенным путем.
В дальнейшем, по мере проникновения физико-химических методов в
биологические исследования снова и все настойчивее стали выдвигаться
гипотезы об абиогенном происхождении жизни. Выше мы уже говорили о
химической эволюции как предпосылке возникновения предбиотической, или
предбиологической, стадии возникновения жизни. С указанными результатами не
мог не считаться В.И. Вернадский, и поэтому его взгляды по этим вопросам не
оставались неизменными, но, опираясь на почву точно установленных фактов,
он не допускал ни божественного вмешательства, ни земного происхождения
жизни. Он перенес возникновение жизни за пределы Земли, а также допускал
возможность ее появлении в биосфере при определенных условиях. Он писал:
“Принцип Реди... не указывает на невозможность абиогенеза вне биосферы или
при установлении наличия в биосфере (теперь или раньше) физико-химических
явлений, не принятых при научном определении этой формы организованности
земной оболочки.” [4]
Несмотря на некоторые противоречия, учение Вернадского о биосфере
представляет собой новый крупный шаг в понимании не только живой природы,
но и ее неразрывной связи с исторической деятельностью человечества.



III. Биогенная миграция химических элементов и биогеохимические принципы.

По Вернадскому, работа живого вещества в биосфере может проявляться в
двух основных формах:
химической (биохимической) – I род геологической деятельности;
механической – II род такой деятельности.
Геологическая деятельность I рода – построение тела организмов и
переваривание пищи, – конечно, является более значительной. Классическим
стало функциональное определение жизни, данное Фридрихом Энгельсом: “жизнь
есть способ существования белковых тел, существенным моментом которого
является постоянный обмен веществ с окружающей их внешней природой, причем
с прекращением этого обмена веществ прокращается и жизнь” [5].
Сейчас появилась возможность вычислить скорость этого обмена. Так, по
данным Л.Н.Тюрюканова, в пшенице, например, полная смена атомов происходит
для фосфора за 15 суток, а для кальция – в 10 раз быстрее: за 1,5 суток!
Собственно говоря, постоянный обмен веществ между живым организмом и
внешней средой и обусловливает проявление большинства функций живого
вещества в биосфере, которые мы рассмотрим и этой части книги. По подсчетам
биолога П.Б.Гофмана-Кадошникова, в течение жизни человека через его тело
проходит 75 т воды, 17 т углеродов, 2,5 т белков, 1,3 т жиров. Между тем по
геохимическому эффекту своей физиологической деятельности человек отнюдь не
самый важный вид разнородного живого вещества биосферы. Геохимический
эффект физиологической деятельности организмов обратно пропорционален их
размерам, и наиболее значимой оказывается деятельность прокариотов –
бактерий и цианобактерий.
Большое значение имеет также количество пропускаемого через организм
вещества. В этом отношении максимальный геохимический эффект на суше имеют
грунтоеды, а в океане – илоеды и фильтраторы. Еще Чарлз Дарвин подсчитал,
что слой экскрементов, выделяемых дождевыми червями на плодородных почвах
Англии, составляет около 5 мм в год! Таким образом, почвенный пласт
мощностью в 1 м дождевые черви полностью пропускют через свой кишечник за
200 лет. В океане с дождевыми червями по “пропускной способности” могут
конкурировать их близкие родственники, представители того же типа кольчатых
червей – полихеты, а также ракообразные. Достаточно 40 экземпляров полихет
на 1 м2, чтобы поверхностный слой донных осадков мощностью в 20 – 30 см
ежегодно проходил через их кишечник. Субстрат при этом существенно
обогащается кальцием, железом, магнием, калием и фосфором по сравнению с
исходными илами.
Копролиты (ископаемые остатки экскрементов) известны в геологических
отложениях, начиная с ордовика, однако бесспорно, что большинство их при
геологических описаниях не учитывается. Происходит это из-за слабой
изученности вопроса и из-за отсутствия диагностических признаков для
определения копролитов.
Между тем в донных отложенияк современных водоемов фекальные комочки
беспозвоночных распространены очень широко и нередко являются основной
частью осадка. В южной Атлантике, например, илы почти нацело слагаются
фекалиями планктонных ракообразных, а по берегам Северного моря донные
осадки, образованные фекалиями мидий, имеют мощность до 8 м.
Биогенная миграция атомов II рода – механическая – отчетливо
проявляется в наземных экосистемах с хорошо развитым почвенным покровом,
позволяющим животным создавать глубокие укрытия (гнездовые камеры термитов,
например, расположены на глубине 2 – 4 м от поверхности). Благодаря
выбросам землероев, в верхние слои почвы попадают первичные невыветрившиеся
минералы, которые, разлагаясь, вовлекаются в биологический круговорот.
Недаром известный геолог Г.Ф.Мирчинк (1889 – 1942) называл сурка-тарбагана
“лучшим геологом Забайкалья” – его норы окружены “коллекциями” горных
пород, добытых с глубины нескольких метров!
Понятие “нора” и “гнездо” обычно ассоциируются у нас с грызунами и
птицами. Между тем биогенная миграция атомов II рода распространена не
только в наземных, но и в морских экосистемах, и здесь ее роль, может быть,
еще более значительна. И на дне моря организмы строят себе укрытия, причем
не только в мягком, но и в скальном грунте. Олигохеты и полихеты
углубляются в грунт на 40 см и более. Двустворчатые моллюски зарываются
обычно неглубоко, но некоторые из них – солениды и миа – роют норы, которым
позавидует и сурок: они достигают глубины нескольких метров. В зоне прибоя
и на перемываемом волнами песке – вот беда! – норы не выроешь и гнездо не
совьешь. Приходится сверлить скальные породы. И сверлят. Сверлят водоросли
и губки, бактерии и моллюски, полихеты, морские ежи, рачки...
Сверлильщики появились в далеком геологическом прошлом. Источенные
ими породы находят даже в докембрийских отложениях; и поныне они продолжают
свою разрушительную работу. Сверлящая деятельность моллюсков фолад вызывает
иногда катастрофические последствия . Когда в районе Сочи в результате
непродуманного строительства берег обнажился от гальки, он начал отступать
со скоростью до 4 м в год. Главным виновником разрушения были фолады,
которые заселили каждый метр скального берега, сложенного глинистыми
сланцами, и принялись дружно сверлить себе подводные норки. К счастью, был
найден выход: берег стали укреплять поперечными стенками, а между ними
засыпать гальку. В результате сверлильщики были уничтожены, движущаяся под
ударами волн галька перемолола их. А в Западной Европе не менее опасную
деятельность проводит случайно завезенный из Китая мохнаторукий краб – он
проник во многие реки, и, строя свои норы, подрывает берега и разрушает
плотины.
К биогенной миграции II рода можно отнести и перемещение самого
живого вещества. Сюда относятся сезонные перелеты птиц, перемещения
животных в поисках корма, массовые миграции животных. Естественно, что все
эти разнообразные формы движения живого вызывают и транспортировку
небиогенного вещества.
Вернадский, как мы видели, подразделял процессы, осуществляемые в
биосфере живым веществом, по характеру самих процессов. Несколько иначе
подошел к зтому вопросу современник Владимира Ивановича Н.А.Андрусов.
“Химическая деятельность организма вообще, имеющая геологическое значение
,– писал Андрусов,– может быть сведена к двум категориям: во-первых, к
образованию на наружной поверхности или внутри твердых выделений, способных
сохраняться; во-вторых, к образованию жидких и газообразных выделений,
способных вступать в различные химические реакции с окружающим
неорганическим миром”. По существу, эту же мысль развивала на современном
материале микробиолог Т.В.Аристовская. Она указала, что миграция атомов
химических элементов может быть как прямым, так и косвенным результатом
жизнедеятельности организмов (в первую очередь бактерий). В таблице
совмещены классификационные подходы Вернадского (горизонтальные ряды) и
Андрусова – Аристовской ( вертикальные столбцы). Для понимания той работы,
которую совершает живое вещество в биосфере, очень важными являются три
основных положения, которые Владимир Иванович называл “биогеохимическими
принципами”.
В формулировке В.И.Вернадского [6] они звучат следующим образом:
I принцип:”Биогенная миграция атомов химических элементов в биосфере всегда
стремится к максимальному своему проявлению”.
II принцип: “Эволюция видов в ходе геологического времени, приводящая к
созданию форм жизни устойчивых в биосфере, идет в направлении,
увеличивающем биогенную миграцию атомов биосферы” (или в другой
формулировке: “При эволюции видов выживают те организмы, которые своею
жизнью увеличивают биогенную геохимическую энергию”).
III принцип: “В течение всего геологического времени, с криптозоя,
заселение планеты должно было быть максимально возможное для всего живого
вещества, которое тогда существовало”.
Для Вернадского I биогеохимический принцип был тесно связан со
способностью живого вещества неограниченно размножаться в оптимальных
условиях. “Вихрь атомов”, который представляет собой жизнь, по определению
Жоржа Кювье, стремится к безграничной зкспансии. Следствием этого и
является максимальное проявление биогенной миграции атомов в биосфере.
II биогеохимический принцип, по существу, затрагивает кардинальную
проблему современной биологической теории – вопрос о направленности
эволюции организмов. По мысли Вернадского, преимущества в ходе эволюции
получают те организмы, которые приобрели способность усваивать новые формы
энергии или “научились” полнее использовать химическую энергию, запасенную
в других организмах. В ходе биологической эволюции, таким образом,
увеличивается “КПД” биосферы в целом. Чисто математически это показал
В.В.Алексеев, который на основе расчетов пришел к следующим выводам:
“Эволюция должна идти в направлении увеличения скорости обмена веществом в
системе”. И далее: “Становится понятным, почему образовались ферменты, роль
которых заключается в резком увеличении скоростей реакций, идущих при
обычных условиях исключительно медленно”.
II биохимический принцип Вернадского получает подтверждения на самом
разнообразном эмпирическом материале. Так, в 1956 году почвовед В.Л.Ковда
изложил результаты химического исследования более 1300 образцов золы
современных высших растений. На этом обширнейшем фактическом материале
автор пришел к выводу, что (за несколькими исключениями) зольность растений
возрастает от представителей древних таксонов к более молодым. Эта
закономерность – одно из частных проявлений II биогеохимического принципа.
Вообще же его проявления в биосфере очень многообразны и довольно
неожиданны. Возьмем другой пример из области ботаники.
Магаданский ботаник А.П.Хохряков недавно установил своеобразную
направленность эволюции высших растений – интенсификацию смен органов в
ходе индивидуального развития организма. “Так, по мнению Хохрякова, у
древних древовидных плаунов – лепидодендронов – смене была подвержена
только часть листьев. У более продвинутых в эволюционном отношении растений
– папоротникообразных – опадают также только листья, но у них в единицу
времени по отношению к массе всего тела сменяется большая часть, чем у
лепидодендронов. У наиболее примитивных голосеменных – саговников – сменам
также подвержены только листья, да и то за исключением оснований. У хвойных
периодически сменяются ветви и кора. Наконец, на примере цветковых мы
наиболее четко видим переход от многолетних форм (деревья и кустарники) к
однолетним (травы). Этот же переход наблюдается и у других таксонов высших
растений: среди древних хвощей и плаунов господствовали древовидные формы,
а современные нам овощи и плауны – травы; среди папоротников в
геологическом прошлом было много древовидных, а сейчас древовидные
папоротники вымирают. Такая интенсификация смен, естественно, приводит к
усилению биогенной миграции атомов в биосфере. И здесь “работает” II
принцип...
III биогеохимический принцип также связан со “всюдностью” или
“давлением” жизни. Этот фактор обеспечивает безостановочный захват живым
веществом любой территории, где возможно нормальное функционирование живых
организмов.



Таблица
Характер и локализация процессов, осуществляемых живым веществом.


|Род | |Внутри |Вне организма |
|геологическо|Где процесс |организма | |
|й |протекает | | |
|деятельности| | | |
| |Характер процесса | | |
|I |Химический |Переваривание |Выделение во внешнюю |
| |(биохимический) |пищи, |среду продуктов |
| | |построение тела|метаболизма и экскретов;|
| | |организма |внеклеточное пищеварение|
|II |Механический |Пропускание |а). Перемещение самого |
| | |неорганиеских |“живого вещества” |
| | |компонентов |(следствие этого – |
| | |пищи через |транспортировка |
| | |желудочный |биогенного вещества); |
| | |тракт |б). перемещение неживого|
| | |грунтоедов и |вещества организмами в |
| | |илоедов |ходе жизнедеятельности |



IV. Биосфера и человек. Ноосфера.

Вернадский, анализируя геологическую историю Земли, утверждает, что
наблюдается переход биосферы в новое состояние – в ноосферу под действием
новой геологической силы, научной мысли человечества. Однако в трудах
Вернадского нет законченного и непротиворечивого толкования сущности
материальной ноосферы как преобразованной биосферы. В одних случаях он
писал о ноосфере в будущем времени (она еще не наступила), в других в
настоящем (мы входим в нее), а иногда связывал формирование ноосферы с
появлением человека разумного или с возникновением промышленного
производства. Надо заметить, что когда в качестве минералога Вернадский
писал о геологической деятельности человека, он еще не употреблял понятий
“ноосфера” и даже “биосфера”. О формировании на Земле ноосферы он наиболее
подробно писал в незавершенной работе “Научная мысль как планетное
явление”, но преимущественно с точки зрения истории науки.
Итак, что же ноосфера: утопия или реальная стратегия выживания? Труды
Вернадского позволяют более обоснованно ответить на поставленный вопрос,
поскольку в них указан ряд конкретных условий, необходимых для становления
и существования ноосферы. Перечислим эти условия:
заселение человеком всей планеты;
резкое преобразование средств связи и обмена между странами;
усиление связей, в том числе политических, между всеми странами Земли;
начало преобладания геологической роли человека над другими геологическими
процессами, протекающими в биосфере;
расширение границ биосферы и выход в космос;
открытие новых источников энергии;
равенство людей всех рас и религий;
увеличение роли народных масс в решении вопросов внешней и внутренней
политики;
свобода научной мысли и научного искания от давления религиозных,
философских и политических построений и создание в государственном строе
условий, благоприятных для свободной научной мысли;
продуманная система народного образования и подъем благосостояния
трудящихся. Создание реальной возможности не допустить недоедания и голода,
нищеты и чрезвычайно ослабить болезни;
разумное преобразование первичной природы Земли с целью сделать ее
способной удовлетворить все материальные, эстетические и духовные
потребности численно возрастающего населения;
исключение войн из жизни общества.
Проследим, насколько выполняются эти условия в современном мире и
остановимся более подробно на некоторых из них.
Заселение человеком всей планеты. Это условие выполнено. На Земле не
осталось мест, где не ступала бы нога человека. Он обосновался даже в
Антарктиде.
Резкое преобразование средств связи и обмена между странами. Это условие
также можно считать выполненным. С помощью радио и телевидения мы
моментально узнаем о событиях в любой точке земного шара. Средства
коммуникации постоянно совершенствуются, ускоряются, появляются такие
возможности, о которых недавно трудно было мечтать. И здесь нельзя не
вспомнить пророческих слов Вернадского: “Этот процесс – полного заселения
биосферы человеком – обусловлен ходом истории научной мысли, неразрывно
связан со скоростью сношений, с успехами техники передвижения, с
возможностью мгновенной передачи мысли, ее одновременного обсуждения на
всей планете.” [7]. До недавнего времени средства телекоммуникации
ограничивались телеграфом, телефоном, радио и телевидением, о которых писал
еще Вернадский. Имелась возможность передавать данные от одного компьютера
к другому при помощи модема, подключенного к телефонной линии, документы на
бумаге передавались с помощью факсимильных аппаратов. Только в последние
годы развитие глобальной телекоммуникационной компьютерной сети Internet
дало начало настоящей революции в человеческой цивилизации, которая входит
сейчас в эру информации. В 1968 году Министерство Обороны США озаботилось
связью множества своих компьютеров в специальную сеть, которая должна была
способствовать научным исследованиям в военно-промышленной сфере.
Изначально к этой сети было предъявлено требование устойчивости к частичным
повреждениям: любая часть сети может исчезнуть в любой момент. И в этих
условиях всегда должно было быть возможным установить связь между
компьютером-источником и компьютером-приемником информации (станцией
назначения). Разработка проекта такой сети и его осуществление было
поручено ARPA – Advanced Research Projects Agency – Управлению передовых
исследований Министерства Обороны. Через пять лет напряженной работы такая
сеть была создана и получила название ARPAnet. В течение первых десяти лет
развитие компьютерных сетей шло незаметно – их услугами пользовались только
специалисты по вычислительной и военной технике. Но с развитием локальных
сетей, объединяющих компьютеры в пределах одной какой-либо организации,
появилась потребность связать воедино локальные сети различных организаций.
Время от времени предпринимались попытки использовать для этого уже готовую
сеть ARPAnet, но бюрократы Министерства Обороны были против. Жизнь
требовала быстрых решений, поэтому за основу будущей сети сетей Internet
была взята структура уже существующей сети ARPAnet. В 1973 году было
организовано первое международное подключение – к сети подключились Англия
и Норвегия. Однако причиной начала взрывного роста сети Internet в конце 80-
х годов стали усилия NSF (National Science Foundation – Национальный
научный фонд США) и других академических организаций и научных фондов всего
мира по подключению научных учреждений к сети. Рост и развитие сети
Internet, совершенствование вычислительной и коммуникационной техники идет
сейчас подобно тому, как идет размножение и эволюция живых организмов. На
это в свое время обратил внимание Вернадский: “Со скоростью, сравнимой
скоростью размножения, выражаемой геометрической прогрессией в ходе
времени, создается этим путем в биосфере все растущее множество новых для
нее косных природных тел и новых больших природных явлений.” [8]. “...Ход
научной мысли, например, в создании машин, как давно замечено, совершенно
аналогичен ходу размножения организмов.” [9]. Если раньше сетью
пользовались только исследователи в области информатики, государственные
служащие и подрядчики, то теперь практически любой желающий может получить
доступ к ней. И здесь мы видим воплощение мечты Вернадского о благоприятной
среде для развития научной работы, популяризации научного знания, об
интернациональности науки. Действительно, если раньше людей разделяли
границы и огромные расстояния, то теперь, возможно, только языковой барьер.
“Всякий научный факт, всякое научное наблюдение, – писал Вернадский, – где
бы и кем бы они ни были сделаны, поступают в единый научный аппарат, в нем
классифицируются и приводятся к единой форме, сразу становятся общим
достоянием для критики, размышлений и научной работы.”[10]. Но если раньше
для того, чтобы вышла в свет научная работа, чтобы научная мысль стала
известной миру, требовались годы, то сейчас любой ученый, имеющий доступ к
сети Internet, может представить свой труд, например, в виде так называемой
WWW странички (World-Wide Web – “Всемирная паутина”) на обозрение всем
пользователям сети, причем не только текст статьи и рисунки (как на
бумаге), но и подвижные иллюстрации, а иногда и звуковое сопровождение.
Сейчас сеть Internet – это мировое сообщество около 30 тысяч компьютерных
сетей, взаимодействующих между собой. Население Internet уже составляет
почти 30 миллионов пользователей и около 10 миллионов компьютеров, причем
количество узлов каждые полтора года удваивается. Вернадский писал: “Скоро
можно будет сделать видными для всех события, происходящие за тысячи
километров” [11]. Можно считать, что и это предсказание Вернадского
сбылось.
Усиление связей, в том числе политических, между всеми странами Земли. Это
условие можно считать если не выполненным, то выполняющимся. Возникшая
после второй мировой войны Организация Объединенных наций (ООН) оказалась
гораздо более устойчивой и действенной, чем Лига наций, существовавшая в
Женеве с 1919 г. по 1946 г.
Начало преобладания геологической роли человека над другими геологическими
процессами, протекающими в биосфере. Это условие также можно считать
выполненным, хотя именно преобладание геологической роли человека в ряде
случаев привело к тяжелым экологическим последствиям. Объем горных пород,
извлекаемых из глубин Земли всеми шахтами и карьерами мира, сейчас почти в
два раза превышает средний объем лав и пеплов, выносимых ежегодно всеми
вулканами Земли.
Расширение границ биосферы и выход в космос. В работах последнего
десятилетия жизни Вернадский не считал границы биосферы постоянными. Он
подчеркивал расширение их в прошлом как итог выхода живого вещества на
сушу, появления высокоствольной растительности, летающих насекомых, а
позднее летающих ящеров и птиц. В процессе перехода в ноосферу границы
биосферы должны расширяться, а человек должен выйти в космос. Эти
предсказания сбылись.
Открытие новых источников энергии. Условие выполнено, но, к сожалению, с
трагическими последствиями. Атомная энергия давно освоена и в мирных, и в
военных целях. Человечество (а точнее политики) явно не готово ограничиться
мирными целями, более того – атомная (ядерная) сила вошла в наш век прежде
всего как военное средство и средство устрашения противостоящих ядерных
держав. Вопрос об использовании атомной энергии глубоко волновал
Вернадского еще более полувека назад. В предисловии к книге “Очерки и речи”
он пророчески писал: “Недалеко время, когда человек получит в свои руки
атомную энергию, такой источник силы, который даст ему возможность строить
свою жизнь, как он захочет... Сумеет ли человек воспользоваться этой силой,
направить ее на добро, а не на самоуничтожение? Дорос ли он до умения
использовать ту силу, которую неизбежно должна ему дать наука?” [12].
Огромный ядерный потенциал поддерживается чувством взаимного страха и
стремлением одной из сторон к зыбкому превосходству. Могущество нового
источника энергии оказалось сомнительным, он пришелся не ко времени и попал
не в те руки. Для развития международного сотрудничества в области мирного
использования атомной энергии в 1957 году создано Международное Агентство
по Атомной Энергии (МАГАТЭ), объединявшее к 1981 году 111 государств.
Равенство людей всех рас и религий. Это условие если не достигнуто, то, во
всяком случае, достигается. Решительным шагом для установления равенства
людей различных рас и вероисповеданий было разрушение в конце прошлого века
колониальных империй.
Увеличение роли народных масс в решении вопросов внешней и внутренней
политики. Это условие соблюдается во всех странах с парламентской формой
правления.
Свобода научной мысли и научного искания от давления религиозных,
философских и политических построений и создание в государственном строе
условий, благоприятных для свободной научной мысли. Трудно говорить о
выполнении этого условия в стране, где еще совсем недавно наука находилась
под колоссальным гнетом определенных философских и политических построений.
Сейчас наука от таких давлений свободна, однако из-за тяжелого
экономического положения в российской науке многие ученые вынуждены
зарабатывать себе на жизнь ненаучным трудом, другие уезжают за границу. Для
поддержания российской науки созданы международные фонды. В развитых и даже
развивающихся странах, что мы видим на примере Индии, государственный и
общественный строй создают режим максимального благоприятствования для
свободной научной мысли.
Продуманная система народного образования и подъем благосостояния
трудящихся. Создание реальной возможности не допустить недоедания и голода,
нищеты и чрезвычайно ослабить болезни. О выполнении этого условия трудно
судить объективно, находясь в большой стране, стоящей на пороге голода и
нищеты, как об этом пишут все газеты. Однако Вернадский предупреждал, что
процесс перехода биосферы в ноосферу не может происходить постепенно и
однонаправлено, что на этом пути временные отступления неизбежны. И
обстановку, сложившуюся сейчас в нашей стране, можно рассматривать как
явление временное и преходящее.
Разумное преобразование первичной природы Земли с целью сделать ее
способной удовлетворить все материальные, эстетические и духовные
потребности численно возрастающего населения. Это условие, особенно в нашей
стране, не может считаться выполненным, однако первые шаги в направлении
разумного преобразования природы во второй половине XX века несомненно
начали осуще

Новинки рефератов ::

Реферат: Линейный ускоритель (Физика)


Реферат: Методичка по экономике (Предпринимательство)


Реферат: Internet (Компьютеры)


Реферат: Изучение системы и процесса управления. Выполнение обязанностей стажера – помощника на должностях организации (Менеджмент)


Реферат: Билеты за весенний семестр 2001 года по предмету ОСНОВЫ ОРГАНИЗАЦИИ ТУРИСТСКОЙ ДЕЯТЕЛЬНОСТИ (Менеджмент)


Реферат: Постиндустриальное общество и его враги (Социология)


Реферат: Законотворческий процесс и механизм обеспечения реализации законов (Теория государства и права)


Реферат: Английский романтизм. Восточная поэзия Джорджа Гордона Байрона (Литература)


Реферат: Маркетингова сутність реклами (Маркетинг)


Реферат: Козацько-селянські повстання XVI-XVIII ст. (История)


Реферат: Теоретическая педагогика и психология (ответы на экзамене) (Педагогика)


Реферат: Бизнес-план (Менеджмент)


Реферат: Шпоргалки по ТГП (Теория государства и права)


Реферат: Экологические аспекты ведения сельского хозяйства в Бабынинском районе Калужской области (Сельское хозяйство)


Реферат: Интенсивная технология возделывания озимой пшеницы (Сельское хозяйство)


Реферат: Конспект по монографии Российская эмиграция в современной историографии (История)


Реферат: Даосизм (Религия)


Реферат: Формирование речи у дошкольников (Педагогика)


Реферат: Разделение властей - как признак правовой государственности (Теория государства и права)


Реферат: История возникновения представлений о психике (Социология)



Copyright © GeoRUS, Геологические сайты альтруист