GeoSELECT.ru



Авиация / Реферат: История появления реактивной авиации (Авиация)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: История появления реактивной авиации (Авиация)


Содержание.

1.Введение……………………………………………………………………………………………………
2.Принцип работы и классификация реактивных
двигателей……………………………………………………………………………………………
3.Краткая история развития реактивной авиации………
4.Применение реактивной техники в
гражданской авиации……………………………………………………………………
5.Заключение………………………………………………………………………………………………



Часть 1. Введение.

История авиации характеризуется непрекращающейся борьбой за повышение
скорости полета самолетов. Первый официально зарегистрированный мировой
рекорд скорости, установленный в 1906 году, составлял всего 41,3 километра
в час. К 1910 году скорость лучших самолетов возросла до 110 километров в
час. Построенный на Русско-Балтийском заводе еще в начальный период первой
мировой войны самолет-истребитель РБВЗ-16 обладал максимальной скоростью
полета – 153 километра в час. А к началу второй мировой войны уже не
отдельные машины – тысячи самолетов летали со скоростями, превышавшими 500
километров в час.
Из механики известно, что мощность, необходимая для обеспечения
движения самолета, равна произведению силы тяги на его скорость. Таким
образом, мощность растет пропорционально кубу скорости. Следовательно,
чтобы увеличить скорость полета винтомоторного самолета в два раза
необходимо повысить мощность его двигателей в восемь раз. Это ведет к
возрастанию веса силовой установки и к значительному увеличению расхода
горючего. Как показывают расчеты, для удвоения скорости самолета, ведущего
к увеличению его веса и размеров, нужно повысить мощность поршневого
двигателя в 15-20 раз.
Но начиная со скорости полета 700-800 километров в час и по мере
приближения ее к скорости звука сопротивление воздуха увеличивается еще
более резко. Кроме того, коэффициент полезного действия воздушного винта
достаточно высок лишь при скоростях полета, не превышающих 700-800
километров в час. С дальнейшим ростом скорости он резко снижается. Поэтому,
несмотря на все старания авиаконструкторов, даже у лучших самолетов-
истребителей с поршневыми моторами мощностью 2500-3000 лошадиных сил
максимальная скорость горизонтального полета не превышала 800 километров в
час.
Как видим, для освоения больших высот и дальнейшего увеличения
скорости был нужен новый авиационный двигатель, тяга и мощность которого с
увеличением скорости полета не падали бы, а возрастали.
И такой двигатель был создан. Это – авиационный реактивный двигатель.
Он был значительно мощнее и легче громоздких винтомоторных установок.
Использование этого двигателя в конце концов позволило авиации перешагнуть
звуковой барьер.



Часть 2. Принцип работы и классификация реактивных двигателей.

Чтобы понять принцип работы реактивного двигателя, вспомним, что
происходит при выстреле из любого огнестрельного оружия. Каждому, кто
стрелял из ружья или пистолета, известно действие отдачи. В момент выстрела
пороховые газы с огромной силой равномерно давят во все стороны. Внутренние
стенки ствола, дно пули или снаряда и дно гильзы, удерживаемой затвором,
испытывают это давление.
Силы давления на стенки ствола взаимно уравновешиваются. Дав-ление
пороховых газов на пулю (снаряд) вы-брасывает ее из вин-товки (орудия), а
дав-ление газов на дно гильзы и является при-чиной отдачи (рис.1).
Отдачу легко сделать и источником непрерывного движения. Вообразим
себе, например, что мы поставили на легкую тележку станковый пехотный
пулемет. Тогда при непрекращающейся стрельбе из пулемета она покатится под
влиянием толчков отдачи в сторону, противоположную направлению стрельбы.
На таком принципе и основано действие реактивного двигателя.
Источником движения в реактивном двигателе служит реакция или отдача
газовой струи.
В закрытом сосуде находится сжатый газ
(рис.2а). Давление газа равномерно
распределяется на стенки сосуда, который при
этом остается неподвижным. Но если удалить
одну из торцовых стенок сосуда, то сжатый
газ, стремясь расшириться, начнет быстро
вытекать из отверстия наружу.
Давление газа на противоположную по отношению к отверстию стенку уже
не будет уравновешиваться, и сосуд, если он не закреплен, начнет двигаться
(рис.2б). Важно отметить, что чем больше давление газа, тем больше скорость
его истечения, и тем быстрее будет двигаться сосуд.
Для работы реактивного двигателя достаточно сжигать в резервуаре порох
или иное горючее вещество. Тогда избыточное давление в сосуде вынудит газы
непрерывно вытекать в виде струи продуктов сгорания в атмосферу со
скоростью тем большей, чем выше давление внутри самого резервуара и чем
меньше давление снаружи. Истечение газов из сосуда происходит под влиянием
силы давления, совподающей с направлением выходящей через отверстие струи.
Следовательно неизбежно появится и другая сила равной величины и
противоположного направления. Она-то и заставит резервуар двигаться. Эта
сила носит название силы реактивной тяги.
Все реактивные двигатели можно подразделить на несколько основных
классов . Рассмотрим группировку реактивных двигателей по роду
используемого в них окислителя (рис.3).
В первую группу вхо-дят реактивные
двигатели с собственным окислителем, так
называемые ракетные двигатели. Эта
группа в свою очередь состоит из двух
классов: ПРД – пороховых реактивных дви-
гателей и ЖРД – жидкостных реактивных
двигателей.
В пороховых реактив-ных двигателях
топливо од-новременно содержит горю-чее
и необходимый для его сгорания
окислитель. Прос-тейшим ПРД является
хорошо всем известная фейерве-рочная
ракета. В таком двигателе порох сгорает
в течение нескольких секунд или даже
долей секунды. Развиваемая при этом
реактивная тяга довольно значительна.
Запас топлива ограничен объемом камеры
сгорания.
В конструктивном отношении ПРД исключительно прост. Он может
применяться как непродолжительно работающая, но создающая все же достаточно
большую силу тяги установка.
В жидкостных реактивных двигателях в состав топлива в состав топлива
входит какая-либо горючая жидкость (обычно керосин или спирт) и жидкий
кислород или какое-нибудь кислородосодержащее вещество (например, перекись
водорода или азотная кислота). Кислород или заменяющее его вещество,
необходимое для сжигания горючего, принято называть окислителем. При работе
ЖРД горючее и окислитель непрерывно поступают в камеру сгорания; продукты
сгорания извергаются наружу через сопло.
Жидкостный и пороховой реактивные двигатели, в отличие от остальных,
способны работать в безвоздушном пространстве.
Вторую группу образуют воздушно-реактивные двигатели – ВРД,
использующие окислитель из воздуха. Они в свою очередь подразделяются на
три класса: прямоточные ВРД (ПВРД), пульсирующие ВРД (ПуВРД), и
турбореактивные двигатели (ТРД).
В прямоточном (или бескомпрессорном) ВРД го-рючее сжигается в камере
сгорания в атмосферном воздухе, сжатом своим собственным скоростным на-
пором (рис.4). Сжатие воз-духа осуществляется по за-кону Бернулли. Согласно
этому закону, при движении жидкости или газа по расширяющемуся каналу ско-
рость струи уменьшается, что ведет к повышению дав-ления газа или жидкости.
Для этого в ПВРД предусмотрен диффузор – расширяющийся канал, по
которому атмосферный воздух попадает в камеру сгорания.
Площадь выходного сечения сопла обычно значительно больше площади
входного сечения диффузора. Кроме того по поверхности диффузора давление
распределяется иначе и имеет большие значения, чем на стенках сопла. В
результате действия всех этих сил возникает реактивная тяга.
КПД прямоточного ВРД при скорости полета 1000 километров в час равен
примерно 8-9%. А при увеличении этой скорости в 2 раза КПД в ряде случаев
может достигнуть 30% - выше, чем у поршневого авиадвигателя. Но надо
заметить, что ПВРД обладает существенным недостатком: такой двигатель не
дает тяги на месте и не может, следовательно, обеспечить самостоятельный
взлет самолета.
Сложнее устроен турбореактивный двигатель (ТРД). В полете встречный
воздух проходит через переднее входное отверстие к компрессору и сжимается
в несколько раз (рис.5). Сжатый компрессором воздух попадает в камеру
сгорания, куда впрыскивается жидкое горючее (обычно керосин); образующиеся
при сгорании этой смеси газы подаются к лопаткам газовой турбины.
Диск турбины за-креплен на одном валу с колесом компрессора, поэтому
горячие газы, проходящие через турби-ну, приводят ее во вра-щение вместе с
компрес-сором. Из турбины газы попадают в сопло. Здесь давление их падает,
а скорость возрастает. Выходящая из двигателя газовая струя создает
реактивную тягу.
В отличие от прямоточного ВРД турбореактивный двигатель способен
развивать тягу и при работе на месте. Он может самостоятельно обеспечить
взлет самолета. Для запуска ТРД применяются специальные пусковые
устройства: электростартеры и газотурбостартеры.
Экономичность ТРД на дозвуковых скоростях полета намного выше, чем
прямоточного ВРД. И только на сверхзвуковых скоростях порядка 2000
километров в час расход горючего для обоих типов двигателей становится
примерно одинаковым.


Часть 3. Краткая история развития
реактивной авиации.

Самым известным и наиболее простым реактивным двигателем является
пороховая ракета, много столетий назад изобретенная в древнем Китае.
Естественно, что пороховая ракета оказалась первым реактивным двигателем,
который попытались использовать в качестве авиационной силовой установки.
В самом ночале 30-х годов в СССР развернулись работы, связанные с
созданием реактивного двигателя для летательных аппаратов. Советский
инженер Ф.А.Цандер еще в 1920 году высказал идею высотного ракетного
самолета. Его двигатель “ОР-2”, работавший на бензине и жидком кислороде,
предназначался для установки на опытный самолет.
В Германии при участии инженеров Валье, Зенгера, Опеля и Штаммера
начиная с 1926 года систематически производились эксперименты с пороховыми
ракетами, устанавливавшимися на автомобиль, велосипед, дрезину и, наконец,
на самолет. В 1928 году были получены первые практические результаты:
ракетный автомобиль показал скорость около 100 км/час, а дрезина – до 300
км/час. В июне того же года был осуществлен первый полет самолета с
пороховым реактивным двигателем. На высоте 30 м. Этот самолет пролетел 1,5
км., продержавшись в воздухе всего одну минуту. Спустя немногим более года
полет был повторен, причем была достигнута скорость полета 150 км/час.
К концу 30-х годов нашего века в разных странах велись
исследовательские, конструкторские и экспериментальные работы по созданию
самолетов с реактивными двигателями.
В 1939 году в СССР состоялись летные испытания прямоточных воздушно-
реактивных двигателей (ПВРД) на самолете “И-15” конструкции
Н.Н.Поликарпова. ПВРД конструкции И.А.Меркулова были установлены на нижних
плоскостях самолета в качестве дополнительных моторов. Первые полеты
проводил опытный летчик-испытатель П.Е.Логинов. На заданной высоте он
разгонял машину до максимальной скорости и включал реактивные двигатели.
Тяга дополнительных ПВРД увеличивала максимальную скорость полета. В 1939
году были отработаны надежный запуск двигателя в полете и устойчивость
процесса горения. В полете летчик мог неоднократно включать и выключать
двигатель и регулировать его тягу. 25 января 1940 года после заводской
отработки двигателей и проверки их безопасности во многих полетах
состоялось официальное испытание - полет самолета с ПВРД. Стартовав с
Центрального аэродрома имени Фрунзе в Москве, летчик Логинов включил на
небольшой высоте реактивные двигатели и сделал несколько кругов над районом
аэродрома.
Эти полеты летчика Логинова в 1939 и 1940 годах были первыми полетами
на самолете со вспомогательными ПВРД. Вслед за ним в испытании этого
двигателя приняли участие летчики-испытатели Н.А.Сопоцко, А.В.Давыдов и
А.И.Жуков. Летом 1940 года эти двигатели были установлены и испытаны на
истребителе И-153 “Чайка” конструкции Н.Н.Поликарпова. Они увеличивали
скорость самолета на 40-50 км/час.
Однако при скоростях полета, которые могли развивать винтовые
самолеты, дополнительные бескомпрессорные ВРД расходовали очень много
горючего. Есть у ПВРД еще один важный недостаток: такой двигатель не дает
тяги на месте и не может, следовательно, обеспечить самостоятельный взлет
самолета. Это означает, что самолет с подобным двигателем должен быть
обязательно снабжен какой-либо вспомогательной стартовой силовой
установкой, например винтомоторной, иначе ему не подняться в воздух.
В конце 30-х – начале 40-х годов нашего столетия разрабатывались и
испытывались первые самолеты с реактивными двигателями других типов.
Один из первых полетов человека на самолете с жидкостным реактивным
двигателем (ЖРД) был также совершен в СССР. Советский летчик В.П.Федоров в
феврале 1940 года испытал в воздухе ЖРД отечественной конструкции. Летным
испытаниям предшествовала большая подготовительная работа. Спроектированный
инженером Л.С.Душкиным ЖРД с регулируемой тягой прошел всесторонние
заводские испытания на стенде. Затем его установили на планер конструкции
С.П.Королева. После того, как двигатель успешно прошел наземные испытания
на планере, приступили к летным испытаниям. Реактивный самолет
отбуксировали обычным винтовым самолетом на высоту 2 км. На этой высоте
летчик Федоров отцепил трос и, отлетев на некоторое расстояние от самолета-
буксировщика, включил ЖРД. Двигатель устойчиво работал до полного
израсходования топлива. По окончании моторного полета летчик благополучно
спланировал и приземлился на аэродроме.
Эти летные испытания явились важной ступенью на пути создания
скоростного реактивного самолета.
Вскоре советский конструктор В.Ф.Болховитинов спроектировал самолет,
на котором в качестве силовой установки был использован ЖРД Л.С.Душкина.
Несмотря на трудности военного времени, уже в декабре 1941 года двигатель
был построен. Параллельно создавался и самолет. Проектирование и постройка
этого первого в мире истребителя с ЖРД были завершены в рекордно короткий
срок: всего за 40 дней. Одновременно шла подготовка и к летным испытаниям.
Проведение первых испытаний в воздухе новой машины, получившей марку “БИ”,
было возложено на летчика-испытателя капитана Г.Я.Бахчиванджи.
15 мая 1942 года состоялся первый полет боевого самолета с ЖРД. Это
был небольшой остроносый самолет-моноплан с убирающимся в полете шасси и
хвостовым колесом. В носовом отсеке фюзеляжа помещались две пушки калибром
20 мм, боезапас к ним и радиоаппаратура. Далее были расположены кабина
пилота, закрытая фонарем, и топливные баки. В хвостовой части находился
двигатель. Полетные испытания прошли успешно.
В годы Великой Отечественной войны советские авиаконструкторы работали
и над другими типами истребителей с ЖРД. Конструкторский коллектив,
руководимый Н.Н.Поликарповым, создал боевой самолет “Малютка”. Другой
коллектив конструкторов во главе с М.К.Тихонравовым разработал реактивный
истребитель марки “302”.
Работы по созданию боевых реактивных самолетов широко проводились и за
рубежом.
В июне 1942 года состоялся первый полет немецкого реактивного
истребителя-перехватчика “Ме-163” конструкции Мессершмитта (рис.6). Только
девятый вариант этого самолета был запущен в серийное производство в 1944
году.
Впервые этот самолет с ЖРД был применен в боевой обстановке в середине
1944 года при вторжении союзни-ческих войск во Францию. Он предназначался
для борьбы с бомбардировщиками и истре-бителями противника над немецкой
территорией. Само-лет представлял собой моноплан без горизонталь-ного
хвостового оперения, что оказалось возможным благодаря большой стрело-
видности крыла.
Фюзеляжу была придана обтекаемая форма. Наружные поверхности самолета
были очень гладкие. В носовом отсеке фюзеляжа размещалась ветрянка для
привода генератора электросистемы самолета. В хвостовой части фюзеляжа
устанавливался двигатель – ЖРД с тягой до 15 кН. Между корпусом двигателя и
обшивкой машины имелась огнеупорная прокладка. Баки с горючим были
размещены в крыльях, а с окислителями – внутри фюзеляжа. Обычного шасси на
самолете не было. Взлет происходил с помощью специальной стартовой тележки
и хвостового колеса. Сразу же после взлета эта тележка сбрасывалась, а
хвостовое колесо убиралось внутрь фюзеляжа. Управление самолетом
производилось посредством руля поворота, установленного, как обычно, за
килем, и размещенных в плоскости крыла рулей высоты, которые одновременно
являлись и элеронами. Посадка производилась на стальную посадочную лыжу
длиной около 1,8 метра с полозом шириной 16 сантиметров. Обычно самолет
взлетал, используя тягу установленного на нем двигателя. Однако по замыслу
конструктора была предусмотрена возможность использования подвесных
стартовых ракет, которые сбрасывались после взлета, а также возможность
буксировки другим самолетом до нужной высоты. При работе ЖРД в режиме
полной тяги самолет мог набирать высоту почти по вертикали. Размах крыльев
самолета составлял 9,3 метра, его длина – около 6 метров. Полетный вес при
взлете был равен 4,1 тонны, при посадке – 2,1 тонны; следовательно, за все
время моторного полета самолет становился почти вдвое легче – расходовал
примерно 2 тонны топлива. Длина разбега была более 900 метров,
скороподъемность – до 150 метров в секунду. Высоту в 6 километров самолет
достигал через 2,5 минуты после взлета. Потолок машины был 13,2 километра.
При непрерывной работе ЖРД полет продолжался до 8 минут. Обычно по
достижении боевой высоты двигатель работал не непрерывно, а периодически,
причем самолет то планировал, то разгонялся. В результате общая
продолжительность полета могла быть доведена до 25 минут и даже более. Для
такого режима работы характерны значительные ускорения: при включении ЖРД
на скорости 240 километров в час самолет достигал скорости 800 километров в
час спустя 20 секунд (за это время он пролетал 5,6 километров со средним
ускорением 8 метров в секунду квадрат). У земли этот самолет развивал
максимальную скорость 825 километров в час, а в интервале высот 4-12
километров его максимальная скорость возрастала до 900 километров в час.
В тот же период в ряде стран велись интенсивные работы по созданию
воздушно-реактивных двигателей (ВРД) различных типов и конструкций. В
Советском Союзе, как уже говорилось, испытывался прямоточный ВРД,
установленный на самолете-истребителе.
В Италии в августе 1940 года был совершен первый 10-минутный полет
реактивного самолета-моноплана “Кампини-Капрони СС-2” (рис.7). На этом
самолете был установлен так называемый мотокомпрессорный ВРД (этот тип ВРД
не рассматривался в обзоре реактивных двигате-лей, так как он оказался
невыгодным и распространения не получил). Воздух входил через специальное
отверстие в передней части фюзеляжа в трубу переменного сечения, где
поджимался компрессором, который получал вращение от расположенного позади
звез-дообразного поршневого авиа-мотора мощностью 440 лошади-ных сил.
Затем поток сжатого воздуха омывал этот поршневой мотор воздушного
охлаждения и несколько нагревался. Перед поступлением в камеру сгорания
воздух смешивался с выхлопными газами от этого мотора. В камере сгорания,
куда впрыскивалось топливо, в результате его сжигания температура воздуха
повышалась еще больше.
Газовоздушная смесь, вытекавшая из
сопла в хвост-овой части фюзеляжа, созда-
вала реактивную тягу этой силовой
установки. Площадь выходного сечения
реактивно-го сопла регулировалась пос-
редством конуса, могущего перемещаться
вдоль оси сопла. Кабина пилота распо-
лагалась вверху фюзеляжа над трубой для
потока воздуха, проходящей через весь фюзе-
ляж. В ноябре 1941 года на этом самолете
был совершен перелет из Милана в Рим (с
промежуточной посадкой в Пизе для заправки
горючим), длившийся 2,5 часа, причем
средняя скорость полета составила 210
километров в час.
Как видим, реактивный самолет с двигателем, выполненным по такой
схеме, оказался неудачным: он был лишен главного качества реактивного
самолета – способности развивать большие скорости. К тому же расход
горючего у него был весьма велик.
В мае 1941 года в Англии состоялся первый испытательный полет
экспериментального самолета Глостер “Е-28/39” с ТРД с центробежным
компрессором конструкции Уиттла (рис.8).
При 17 тысячах оборо-тов в минуту этот двигатель развивал тягу около
3800 ньютонов. Экспериментальный самолет представлял собой одноместный
истребитель с одним ТРД, расположенным в фюзеляже позади кабины пило-та.
Самолет имел убирающееся в полете трехколесное шасси.
Полтора года спустя, в октябре 1942 года, было проведено первое летное
испытание американского реактивного самолета-истребителя “Эркомет” Р-59А с
двумя ТРД конструкции Уиттла (рис.9). Это был моноплан со
среднерасположенным крылом и с высокоустановленным хвостовым оперением.
Носовая часть фюзеляжа была сильно
вынесена вперед. Самолет был оснащен
трехко-лесным шасси; полетный вес машины
составлял почти 5 тонн, потолок – 12
километ-ров. При летных испытаниях была
достигнута скорость 800 километров в час.
Среди других самолетов с ТРД этого периода следует отметить
истребитель Глостер “Метеор”, первый полет которого состоялся в 1943 году.
Этот одноместный цельнометаллический моноплан оказался одним из наиболее
удачных реактивных самолетов-истребителей того периода. Два ТРД были
установлены на низкорасположенном свободнонесущем крыле. Серийный боевой
самолет развивал скорость 810 километров в час. Продолжительность полета
составляла около 1,5 часов, потолок – 12 километров. Самолет имел 4
автоматические пушки калибра 20 миллиметров. Машина обладала хорошей
маневренностью и управляемостью на всех скоростях.
Этот самолет был первым реактивным истребителем, применявшемся в
боевых воздушных операциях союзной авиации в борьбе против немецких
самолетов-снарядов “V-1” в 1944 году. В ноябре 1941 года на специальном
рекордном варианте этой машины был установлен мировой рекорд скорости
полета – 975 километров в час.
Это был первый офици-ально
зарегистрированный рекорд, установленный
на реактивном самолете. Во время этого
рекордного полета ТРД развивали тягу
примерно по 16 килоньютонов каждый, а
потребление горю-чего соответствовало
расходу приблизительно 4,5 тысячи литров в
час.
В годы второй мировой войны несволько типов боевых самолетов с ТРД
было разработано и испытано в Германии. Укажем на двухмоторный истребитель
“Ме-262” (рис.10), развивавший максимальную скорость 850-900 километров в
час (в зависимости от высоты полета) и четырехмоторный бомбардировщик
“Арадо-234” (рис.11).
Истребитель “Ме-262” был наиболее отработанной и доведенной
конструкцией среди многочисленных типов немецких реактивных машин периода
второй мировой вой-ны. Боевая машина была вооружена четырьмя автома-
тическими пушками калибром 30 миллиметров.
На заключительном этапе Великой Отечественной войны в феврале 1945
года трижды Герой Советского Союза И.Кожедуб в одном из воздушных боев над
территорией Германии впервые сбил реактивный самолет врага – “Ме-262”. В
этом воздушном поединке решающим оказалось преимущество в маневренности, а
не в скорости (максимальная скорость винтового истребителя “Ла-5” на высоте
5 километров была равна 622 километра в час, а реактивного истребителя “Ме-
262” на той же высоте – около 850 километров в час).
Интересно отметить, что первые немецкие реактивные самолеты оснащались
ТРД с осевым компрессором, причем максимальная тяга двигателя была менее 10
килоньютонов. В то же время английские реактивные истребители были
оборудованы ТРД с центробежным компрессором, развивающим примерно вдвое
большую тягу.
Уже в начальный пе-риод развития реактивных машин прежние знакомые
формы самолетов претер-певали более или менее значительные изменения.
Весьма необычно выглядел, например, английский ре-активный истребитель
“Вампир” (рис.12) двухба-лочной конструкции.
Еще более непривычным для глаза был экспериментальный английский
реактивный самолет “Летающее крыло” (рис.13). Этот бесфюзеляжный и
бесхвостый самолет был выполнен в виде крыла, в котором размещались экипаж,
горючее и т.д. Органы стабилизации и управления также были установлены на
самом крыле. Достоинством этой схемы является минимальное лобовое
сопротивление. Известные трудности представляет решение проблемы
устойчивости и управляемости “Летающего крыла”.
При разработке этого самолета ожидалось, что
стреловидность крыла позволит добиться большой
устойчивости в полете при одновременном существенном
уменьшении сопротивления. Английская авиационная
фирма “Де-Хевиленд”, построившая самолет,
предполагала использовать его для изучения явлений
сжимаемости воздуха и устойчивости полета при больших
скоростях. Стреловидность крыла этого
цельнометаллического самолета составляла 40 градусов.
Силовая установка состояла из одного ТРД. На концах
крыльев в специальных обтекателях находились
противоштопорные парашюты.
В мае 1946 года самолет “Летающее крыло” быс впервые испытан в пробном
полете. А в сентябре того же года во время очередного испытательного полета
он потерпел аварию и разбился. Пилотировавший его летчик трагически погиб.
В нашей стране в годы Великой Отечественной войны начались обширные
исследовательские работы по созданию боевых самолетов с ТРД. Война ставила
задачу – создать самолет-истребитель, обладающий не только большой
скоростью, но и значительной продолжительностью полета: ведь разработанные
реактивные истребители с ЖРД имели весьма малую продолжительность полета –
всего 8-15 минут. Были разработаны боевые самолеты с комбинированной
силовой установкой – винтомоторной и реактивной. Так, например, истребители
“Ла-7” и “Ла-9” были снабжены реактивными ускорителями.
Работа над одним из первых советских реактивных самолетов началась еще
в 1943-1944 годах. Эта боевая машина создавалась конструкторским
коллективом, возглавляемым генералом инженерно-авиационной службы Артемом
Ивановичем Микояном. То был истребитель “И-250” с комбинированной силовой
установкой, которая состояла из поршневого авиадвигателя жидкостного
охлаждения типа “ВК-107 А” с воздушным винтом и ВРД, компрессор которого
получал вращение от поршневого мотора. Воздух поступал в воздухозаборник
под валом винта, проходил по каналу под кабиной летчика и поступал в
компрессор ВРД. За компрессором были установлены форсунки для подачи
топлива и запальная аппаратура. Реактивная струя выходила через сопло в
хвостовой части фюзеляжа. Свой первый полет “И-250” совершил еще в марте
1945 года. Во время летных испытаний была достигнута скорость, значительно
превышающая 800 километров в час.
Вскоре этот же коллектив конструкторов создал реактивный истребитель
“МИГ-9”. На нем устанавливались два ТРД типа “РД-20”. Каждый двигатель
развивал тягу до 8800 ньютонов при 9,8 тысячах оборотов в минуту. Двигатель
типа “РД-20” с осевым компрессором и регулируемым соплом имел кольцевую
камеру сгорания с шестнадцатью горелками вокруг форсунок для впрыска
топлива. 24 апреля 1946 года летчик-испытатель А.Н.Гринчик совершил на
самолете “МИГ-9” первый полет. Как и самолет “БИ”, эта машина мало
отличалась по своей конструктивной схеме от поршневых самолетов. И все же
замена поршневого мотора реактивным двигателем повысила скорость примерно
на 250 километров в час. Максимальная скорость “МИГ-9” превышала 900
километров в час. В конце 1946 года эта машина была запущена в серийное
производство.
В апреле 1946 года был совершен первый полет на реактивном истребителе
конструкции А.С.Яковлева. Для облегчения перехода к производству этих
самолетов с ТРД был использован серийный винтовой истребитель “Як-3”, у
которого передняя часть фюзеляжа и средняя часть крыла были переделаны под
установку реактивного двигателя. Этот истребитель применялся как реактивный
тренировочный самолет наших ВВС.
В 1947-1948 годах прошел летные испытания советский реактивный
истребитель конструкции А.С.Яковлева “Як-23” (рис.14), который обладал
более высокой скоростью.
Это было достигнуто благодаря установке на нем турбореактивного
двигателя типа “РД-500”, который раз-вивал тягу до 16 кило-ньютонов при
14,6 тысячах оборотов в минуту. “Як-23” представлял собой одномест-ный
цельнометаллический мо-ноплан со среднерасположен-ным крылом.
При создании и испытании первых реактивных самолетов наши конструкторы
столкнулись с новыми проблемами. Оказалось, что одного увеличения тяги
двигателя еще недостаточно для осуществления полета со скоростью, близкой к
скорости распространения звука. Исследования сжимаемости воздуха и условий
возникновения скачков уплотнения проводились советскими учеными начиная с
30-х годов. Особенно большой размах они приобрели в 1942-1946 годах после
летных испытаний реактивного истребителя “БИ” и других наших реактивных
машин. В результате этих исследований уже к 1946 году был поставлен вопрос
о коренном изменении аэродинамической схемы высокоскоростных реактивных
самолетов. Встала задача создания реактивных самолетов со стреловидным
крылом и оперением. Наряду с этим возникли и смежные задачи – потребовалась
новая механизация крыла, иная система управления и т.д.
Настойчивая творческая работа научно-исследова-тельских,
конструкторских и производственных коллективов увенчалась успехом: новые
отечественные реактивные самолеты ни в чем не уступали мировой авиационной
технике того периода. Среди скоростных реактивных машин, созданных в СССР в
1946-1947 годах, выделяется своими высокими летно-тактическими и
эксплуатационными характеристиками реактивный истребитель конструкции
А.И.Микояна и М.И.Гуревича “МИГ-15” (рис.15), со стреловидным крылом и
оперением. Применение стреловидного крыла и оперения повысило скорость
горизонтального полета без существенных изменений его устойчивости и
управляемости. Увеличению скорости самолета во многом способствовало также
повышение его энерговооруженности: на нем был установлен новый ТРД с
центробежным компрессором “РД-45” с тягой около 19,5 килоньютонов при 12
тысячах оборотов в минуту. Горизонтальная и вертикальная скорости этой
машины превосходили все достигнутое ранее на реактивных самолетах.
В испытаниях и доводке самолета
принимали участие летчики-испытатели Герои
Советского Союза И.Т.Иващен-ко и
С.Н.Анохин. Самолет имел хорошие летно-
тактичес-кие данные и был прост в
эксплуатации. За исключи-тельную
выносливость, прос-тоту в техническом
обслу-живании и легкость в управ-лении он
получил прозвище “самолет-солдат”.
Конструкторское бюро, работающее под руководством С.А.Лавочкина,
одновременно с выпуском “МИГ-15” создало новый реактивный истребитель “Ла-
15”. Он имел стреловидное крыло, расположенное над фюзеляжем. На нем было
мощное бортовое вооружение. Из всех существовавших тогда истребителей со
стреловидным крылом “Ла-15” имел наименьший полетный вес. Благодаря этому
самолет “Ла-15” с двигателем “РД-500”, имевшим меньшую тягу, чем двигатель
“РД-45”, установленный на “МИГ-15”, обладал примерно такими же летно-
тактическими данными, как и “МИГ-15”.
Стреловидность и специальный профиль крыльев и оперения реактивных
самолетов резко уменьшили сопротивление воздуха при полетах со скоростью
распространения звука. Теперь на волновом кризисе сопротивление возрастало
уже не в 8-12 раз, а всего в 2-3 раза. Это подтвердили и первые
сверхзвуковые полеты советских реактивных самолетов.

Часть 4. Применение реактивной техники в гражданской авиации.

Вскоре реактивные двигатели стали устанавливаться и на самолетах
гражданской авиации.
В 1955 году за рубежом начал эксплуатироваться многоместный
пассажирский реактивный самолет “Комета-1”. Эта пассажирская машина с
четырьмя ТРД обладала скоростью около 800 километров в час на высоте 12
километров. Самолет мог перевозить 48 пассажиров.
Дальность полета сос-тавляла около 4 тысяч кило-метров. Вес с
пассажирами и полным запасом горючего составлял 48 тонн. Размах крыльев,
имеющих небольшую стреловидность и относи-тельно тонкий профиль, - 35
метров. Площадь крыльев – 187 квадратных метров, длина самолета – 28
метров. Однако после крупной аварии этого самолета в Средизем-ном море его
эксплуатация была прекращена. Вскоре стал использоваться конст-руктивный
вариант этого самолета – “Комета-3” (рис.16).
Представляют интерес данные об американском пассажирском самолете с
четырьмя турбовинтовыми двигателями Локхид “Электра”, расчитанном на 69
человек (включая экипаж из двух пилотов и бортинженера). Число пассажирских
мест могло быть доведено до 91. Кабина герметизирована, входная дверь
двойная. Крейсерская скорость этой машины – 660 километров в час. Вес
пустого самолета – 24,5 тонн, полетный вес – 50 тонн, в том числе 12,8 тонн
горючего для рейса и 3,2 тонны запасного горючего. Заправка и обслуживание
самолета на промежуточных аэродромах занимали 12 минут. Выпуск самолета был
начат в 1957 году.
Американская фирма “Боинг” с 1954 года проводила испытания самолета
“Боинг-707” с четырьмя ТРД. Скорость самолета – 800 километров в час,
высота полета – 12 километров, дальность – 4800 километров. Этот самолет
был предназначен для использования в военной авиации в качестве “воздушного
танкера” – для заправки боевых самолетов горючим в воздухе, но мог быть
переоборудованным и для применения в гражданской транспортной авиации. В
последнем случае на машине могло быть установлено 100 пассажирских мест.
В 1959 году началась эксплуатация французского пассажирского самолета
“Каравелла”. У самолета был круглый фюзеляж диаметром 3,2 метра, в котором
был оборудован герметизированный отсек длиной 25,4 метра. В этом отсеке
размещалась пассажирская кабина на 70 мест. Самолет имел стреловидное
крыло, скошенное назад под углом 20 градусов. Взлетный вес самолета – 40
тонн. Силовая установка состояла из двух ТРД с тягой по 40 килоньютонов
каждый. Скорость самолета была около 800 километров в час.
В СССР уже в 1954 году на одной из воздушных авиалиний доставка
срочных грузов и почты производилась скоростными реактивными самолетами “Ил-
20”(рис.17).
С весны 1955 года реактивные почтово-грузовые самолеты “Ил-20” начали
курсировать на воздушной трассе Москва-Новосибирск. На борту самолетов –
матрицы столичных газет. Благодаря использованию этих самолетов жители Ново-
сибирска получали московс-кие газеты в один день с москвичами.
На авиационном празднике 3 июля 1955 года на Тушинском аэродроме под
Москвой впервые был показан новый реактивный пассажирский самолет
конструкции А.Н.Туполева “ТУ-104”(рис.18).



Этот самолет с двумя ТРД тягой по 80 килоньютонов каждый имел отличные
аэродинамические формы. Он мог перевозить 50 пассажиров, а в туристическом
варианте – 70. Высота полета превышала 10 километров, полетный вес – 70
тонн. Самолет имел прекрасную звуко- и теплоизоляцию. Машина была
герметична, воздух в салон отбирался от компрессоров ТРД. В случае отказа
одного ТРД самолет мог продолжать полет на другом. Дальность беспосадочного
перелета составляла 3000-3200 километров. Скорость полета могла достигать
1000 километров в час.
15 сентября 1956 года самолет Ту-104 совершил первый регулярный рейс с
пассажирами по трассе Москва-Иркутск. Через 7 часов 10 минут летного
времени, преодолев с посадкой в Омске 4570 километров, самолет приземлился
в Иркутске. Время в пути по сравнению с полетом на поршневых самолетах
сократилось почти втрое. 13 февраля 1958 года самолет Ту-104 стартовал в
первый (технический) рейс по авиалинии Москва-Владивосток - одной из самых
протяженных в нашей стране.
“ТУ-104” получил высокую оценку и в нашей стране и за рубежом.
Иностранные специалисты, выступив в печати, заявили, что начав регулярную
перевозку пассажиров на реактивных самолетах “ТУ-104”, Советский Союз на
два года опередил США, Англию и другие западные страны по массовой
эксплуатации пассажирских турбореактивных самолетов : американский
реактивный самолет «Боинг-707» и английская «Комета-IV» вышли на воздушные
линии только в конце 1958 года, а французский «Каравелла» - в 1959 году.
В гражданской авиации также использовались самолеты с турбовинтовыми
двигателями (ТВД). Эта силовая установка по устройству похожа на ТРД, но в
ней на одном валу с турбиной и компрессором с передней стороны двигателя
установлен воздушный винт. Турбина здесь устроена таким образом, что
раскаленные газы, поступающие из камер сгорания в турбину, отдают ей
большую часть своей энергии. Компрессор потребляет мощность значительно
меньше той, которую развивает газовая турбина, а избыточная мощность
турбины передается на вал винта.
ТВД – промежуточный тип авиационной силовой установки. Хотя газы,
выходящие из турбины, и выпускаются через сопло и их реакция порождает
некоторую тягу, основная тяга создается работающим винтом, как у обычного
винтомоторного самолета.
ТВД не получил распространения в боевой авиации, так как он не может
обеспечить такую скорость движения, как чисто реактивные двигатели. Также
он непригоден на экспрессных линиях гражданской авиации, где решающим
фактором является скорость, а вопросы экономичности и стоимости полета
отходят на второй план. Но турбовинтовые самолеты целесообразно
использовать на трассах различной протяженности, рейсы по которым
совершаются со скоростями порядка 600-800 километров в час. При этом нужно
учитывать, что, как показал опыт, перевозка на них пассажиров на расстояние
1000 километров обходится на 30% дешевле, чем на винтовых самолетах с
поршневыми авиадвигателями.
В 1956-1960 годах в СССР появилось много новых самолетов с ТВД. Среди
них “ТУ-114”(220 пассажиров), “Ан-10”(100 пассажиров), “Ан-24”(48
пассажиров), “Ил-18”(89 пассажиров).


Часть 5.Заключение.

Изобретение реактивного авиационного двигателя предопределило резкий
скачок в развитии авиации. Новые самолеты с реактивными силовыми
установками были значительно быстрее и мощнее свих аналогов, оснащенных
поршневыми авиамоторами.
Реактивный двигатель позволил самолетам преодолеть звуковой барьер,
что было практически неосуществимо при использовании поршневых авиамоторов.
Современные реактивные самолеты способны двигаться со скоростями, в
несколько раз превышающими скорость звука.
Активное развитие реактивной авиации предзнаменовало наступление
космической эры. Ведь первые ракетные реактивные двигатели были по
конструкции похожи на авиационные жидкостные реактивные двигатели.
Изобретение турбовинтового двигателя позволило снизить стоимость
пассажирских авиаперевозок, а внедрение турбореактивного двигателя в
гражданскую авиацию – повысить их скорость. Все это способствовало
популяризации гражданских авиаперевозок среди населения и ускорило общий
научно-технический прогресс.



Список литературы:


1. Арлазоров М.С. “Гражданская реактивная создавалась так…”. Москва,
1976.

2. Баев Л.К. “Реактивные самолеты”. Москва, 1958.


3. Новиков А.А. “Реактивная техника в транспортной авиации”.
Ленинград, 1963.

-----------------------



Рисунок 1.



Рисунок 2.



Рисунок 3. Классификация реактивных двигателей.



Рисунок 4. Принципиальная схема прямоточного ВРД



Рисунок 5. Схема работы ТРД.



Рисунок 6. Немецкий истребитель-перехватчик с ЖРД “Ме-163”.



Рисунок 7. Самолет “Кампини-Капрони ”:
а – вид сбоку в полете;
б – вид спереди на земле.



Рисунок 8. Самолет Глостер “Е -28/39”



Рисунок 9. Самолет “Эркомет” Р-59А



Рисунок 11. Бомбардировщик “Арадо-234”



Рисунок 10. Истребитель “Ме-262”



Рисунок 12. Истребитель “Вампир”



Рисунок 13. Самолет “Летающее крыло”.



Рисунок 14. Истребитель “Як-23”



Рисунок 15. Истребитель “МИГ-15”



Рисунок 16. Реактивный пассажирский самолет “Комета-3” (в полете и на
земле).



Рисунок 17. Самолет “Ил-20”



Рисунок 18. Реактивный пассажирский самолет “ТУ-104” на аэродроме.

2

3
6

17
20






Реферат на тему: К. Э. Циолковский - основоположник космонавтики


«Константин Эдуардович Циолковский –
основоположник космонавтики»

Реферат студента 1 курса
Петухова Романа
факультет АК
группа АК4-11
МГТУ им. Баумана



Москва 2002


План:
1. Детство.
2. В Москве.
3. Становление педагога и учёного.
4. Пионерские работы по космонавтике и воздухоплаванию.
5. Беды и радости.
6. Заслуженное признание.
7. Дирижабли.
8. «Вне Земли».
9. Международное признание.
10. Приближая будущее.
11. Последний год.
«Человечество не останется вечно на Земле,
но, в погоне за светом и пространством,
сначала робко проникнет за пределы атмосферы,
а затем завоюет себе все околосолнечное пространство»
К.Э. Циолковский
1. Детство.
Имя великого русского ученого, основоположника теории реактивного
движения и космонавтики К.Э. Циолковского известно во всем мире. Вся
деятельность его - настоящий подвиг во славу своего народа, на благо всего
человечества. Не случайно так тепло сказал о Константине Эдуардовиче первый
в мире космонавт Юрий Алексеевич Гагарин: «Он очень любил людей, ради
которых жил и работал, все свои труды он завещал советскому народу», вот
почему никогда не сотрется в веках имя Константина Эдуардовича
Циолковского, «великого пионера Вселенной».
Родился Константин Эдуардович 5/17 сентября 1857 года в селе Ижевском
Рязанской губернии в семье лесничего Эдуарда Игнатьевича Циолковского.
Фамилия эта известна с 1697 года. В числе сыновей Игнатия
Циолковского, захудалого помещика из Ровенского уезда Волынской губернии,
упоминается Эдуард, отец будущего ученого. После окончания Петербургского
Лесного и Межевого института Эдуард Игнатьевич служил помощником лесничего,
а затем и лесничим в Олонецкой, Петербургской, Вятской губерниях, в
Спасском уезде Рязанской гу6ернии. Здесь в селе Ижевском он и познакомился
с дочерью мелкопоместного дворянина И. И. Юмашева Марией Ивановной, сделал
ей предложение. Константин Эдуардович писал: «Я думаю, что получил
соединение сильной воли отца с талантливостью матери». В 1862 году семья
перебралась из Ижевского в Рязань, где Эдуард Игнатьевич получил место
преподавателя естественной истории и таксации землемерно-таксаторских
классов при Рязанской гимна-зии.
В Рязани и произошло с Константином Эдуардовичем несчастье, круто
повернувшее всю его жизнь. После веселого зимнего катания на санках он
простудился. Простуда сильно ослабила организм, инфекция вызвала
скарлатину. «Заболел, бредил. Думали, умру, но я выздоровел, только сильно
оглох, и глухота не проходила. Она очень мучила меня». Если до этого Костя
был веселым и живым мальчуганом, шалуном, участником разнообразных детских
забав, то после болезни началась другая, горькая и тягостная полоса жизни.
«Со сверстниками и в обществе я часто попадал впросак... Это удаляло меня
от людей и зас-тавляло от скуки читать, сосредотачиваться, мечтать. Это
углубляло меня в самого себя, заставляло искать великих дел, чтобы
заслужить одобрение людей и не быть столь пре-зренным».
Пришло время учиться, и Костя вместе с младшим братом поступил в
Вятскую мужс-кую гимназию (в Вятку семья переехала в 1868 году). Но учеба
давалась тяжело: «Учиться в школе я не мог: учителей совершенно не слышал
или слышал одни неясные звуки», — отмечал он впоследствии. Оставив гимназию
после третьего класса, будущий ученый начал заниматься самостоятельно по
книгам отца и старших братьев. Книги помогли ему найти свое «я». Он стал
увлекаться точными науками, моделировать и, по его же словам, еще в детстве
мечтать о полетах, о преодолении земного тяготения, «...книг было мало,
учителей у меня совсем не было, потому мне приходилось больше создавать и
творить, чем воспринимать и усваивать... Одним словом, творческий элемент,
элемент саморазвития, самобытности преобладал», — писал об этом периоде
своей жизни позднее Константин Эдуардович. И далее: «Лет с 14—15 я стал
интересоваться физикой, химией, механикой, астрономией, математикой и т.
д.». Эта самостоятельность развития поможет будущему ученому выработать
свой особый стиль творчества, в котором всегда будут преобладать свобода
мышления, широта кругозора, глубина научного анализа, настойчивость в
доведении каждого научного вопроса до логического разрешения, вера в
необходимость и важность своего труда, органическое сочетание теории и
эксперимента. До глубокой старости сохранил ученый способность удивляться
всему новому, быстро схватывать это новое и идти смело гораздо дальше
вперед, иногда вразрез с существующими положениями, сохранять на протяжении
всей жизни невероятную силу воображения.


2. В Москве.
Обратив внимание на технические способности сына, Эдуард Игнатьевич в
1873 г, отправил его в Москву для получения технического образования. Но в
столице, отказавшись от поступления в какое-либо учебное заведение, юноша
решил заняться самообразованием. «Отец вообразил, что у меня технические
способности, и меня отправили в Москву. Но что я мог сделать там со своей
глухотой?! Какие связи завязать? Без знания жизни я был слепой в отношении
карьеры и заработка. Я получал из дома 10—15 рублей в месяц, питался одним
черным хлебом, не имел даже картошки и чая, зато покупал книги, трубки,
ртуть, серную кислоту и прочее». Три года серьезной работы в библиотеке
Румянцевского музея обогатили его знаниями по математике, физике, химии,
астрономии. «Но что же, собственно, я делал в Москве? Неужели ограничился
одними физическими и химическими опытами? Я проходил первый год тщательно и
систематически курс начертательной математики и физики, на второй же год
занимался высшей математикой. Прочел курс высшей алгебры, дифференциального
и интегрального исчисления, аналитическую геометрию, сферическую
тригонометрию». Занимали юношу многие научные вопросы, чаще всего не
имевшие решения. Одним из таких был вопрос о возможности применения
центробежной силы для подъема за атмосферу. «Ученье о центробежной силе
меня интересовало, потому что я думал применить ее к поднятию в космическое
пространство. Был момент, когда мне показалось, что я решил этот вопрос (16-
ти лет). Я был так взволнован, даже потрясен, что целую ночь не спал -
бродил по Москве и все думал о великих следствиях моего открытия, но уже к
утру я убедился в ложности моего изобретения. Разочарование было так же
сильно, как и очарова-ние. Эта ночь на всю жизнь мою оставила след. Через
30 лет я еще иногда вижу во сне, что поднимаюсь к звездам на моей машине и
чувствую такой же восторг, как в ту незапамятную ночь».
В 1876 году 19-летний Константин по вызову отца возвратился домой. Так
закончился московский период его жизни, но процесс самообразования
продолжался всю последующую жизнь. «Можно считать, что я учился творя, хотя
часто неудачно и с опозданием», — писал он.

3. Становление педагога и учёного.
В Вятке юноша продолжил изучение научной и общественно-политической
литературы. «Из публичной библиотеки... таскал научные книги и журналы.
Помню механику Вейсбаха и Брашмана, ньютоновские «Принципы» и другие». В
Вятке молодой Циолковский впервые попытался заняться педагогическим трудом
- репетиторством. Давал уроки по физике и математике отстающим гимназистам.
Несомненные педагогические способности, хорошие отзывы об уроках позднее
помогли ему в выборе профессии.
В 1879 году Эдуард Игнатьевич вышел в отставку, и семья возвратилась в
Рязань. В городе детства Константин Эдуардович также попытался поддержать
семью репетиторством, но без знакомств и связей найти работу оказалось
невозможно. Приобрести профессию, а потом и получить место помог случай.
Циолковскому попалось на глаза объявление, что каждый желающий может
экстерном экзаменоваться на звание учителя начальной школы. Константин
Эдуардович успешно сдал все экзамены и через несколько месяцев подучил
назначение в небольшой городок Боровск Калужской губернии на должность
учителя арифметики и геометрии. Зимой 1880 года начался боровский период
жизни К.Э. Циолковского - период его становления как педагога и как
ученого.
С первых дней в уездном училище Циолковский с увлечением занялся
педагогической работой. Не ограничиваясь программой, он дополнил
преподаваемые предметы физическими и химическими опытами, показывал
действие электрической машины, рассказывал и показывал, как и почему летает
наполненный дымом шар, плавает лодка, как измерить расстояние до различных
предметов.
В Боровске продолжалась серьезная научная работа. «В Боровске я
возвратился... к серьезным математическим работам... писал, вычислял,
паял, строгал, плавил...», — писал Циолковский. Итогом напряженной
научной работы можно считать интересное исследование о кинетической
теории газов, увы, работа, сделанная совершенно самостоятельно, не стала
открытием. Над этой проблемой уже давно успешно работали другие ученые,
но Константин Эдуардович не знал об этом, так как не имел возможности
пользоваться новинками научной и технической литературы. О другой его
работе «Механика животного организма» благоприятный отзыв сделал И.М.
Сеченов. За эту и ряд других работ Константин Эдуардович был избран
членом Петербургского физико-химического общества.


4. Пионерские работы по космонавтике и воздухоплаванию.
В 1883 году, воспользовавшись школьными каникулами, он закончил
рукопись «Свободное пространство», изложенную в виде научного дневника.
Это первый в мире труд, в котором рассматривались явления в среде, где
отсутствуют силы тяготения и сопротивления. К.Э. Циолковским впервые был
сделан четкий вывод - единственно возможный способ перемещения в
космическом пространстве основан на принципе реактивного движения. Уже в
этой работе чувствуется уверенность автора, что человек в будущем
преодолеет барьер тяготения своей планеты. В «Свободном пространстве»
ученый предугадал основы будущей космической техники и рассмотрел условия
возможного существования человека в космическом корабле. Впервые он
подошел к мысли о необходимости активного преобразовательного отношения к
космосу как месту обитания людей. Много и серьезно работал ученый в это
время и над проблемой воздухоплавания, особенно над вопросом
цельнометаллического дирижабля. «В 1885 году, имея 28 лет, я твердо решил
отдаться воздухоплаванию и теоретически разработать металлический
управляемый аэростат», — писал Циолковский. Результатом раздумий,
исканий, расчетов явилась большая работа «Теория и опыт аэростата».
Исследование это было первым в мире трудом о дирижабле переменного объема
с металлической оболочкой. Большую моральную поддержку оказали тогда
молодому исследователю прогрессивные ученые И.М. Сеченов, А. Г. Столетов,
Д. И. Менделеев.

В Калугу семья Циолковского перебралась в начале 1892 года. Константина
Эдуардовича как опытного и знающего педагога перевели на работу в Калужское
уездное училище.
В 1894 году журнал «Наука и жизнь» напечатал его статью «Аэроплан или
птицеподобная (авиационная) летательная машина», где описывалась
конструкция металлического моноплана с крыльями, похожими на крылья большой
парящей птицы, двигателем внутреннего сгорания, закрытой кабиной для
экипажа, убирающимися шасси и даже автопилотом. В приложении к журналу
«Вокруг света» появился его научно-фантастический рассказ «На Луне». Затем
была издана научно-фантастическая повесть «Грезы о Земле и небе и эффекты
всемирного тяготения». В петербургском журнале «Научное обозрение»
опубликована статья «Продолжительность лучеиспускания Солнца».
Циолковский построил аэродинамическую трубу для испытания моделей
летательных аппаратов. Это была первая в России «воздуходувка», как называл
ее ученый, с открытой рабочей частью. Кстати, аэродинамическая труба,
построенная под руководством профессора Н.Е. Жуковского, появилась
несколькими годами позже. Работа по аэродинамике подучила поддержку
Российской академии наук. Академия выделила Константину Эдуардовичу
субсидию в 470 рублей на продолжение опытов. Это была единственная помощь
официального учреждения ученому-самоучке.
Здесь был завершен капитальный труд «Исследование мировых пространств
реактивными приборами». В нем впервые в мире основывалась возможность
применения реактивных летательных аппаратов для межпланетных сообщений,
давалась теория полета ракеты. Идея применения ракеты для решения научных
проблем, идея использования реактивных двигателей для создания движения
космических аппаратов целиком принадлежит Циолковскому.
[pic]


5. Беды и радости.
В 1897 году по совместительству Константин Эдуардович начал работать в
реальном училище, а через год — в женском епархиальном: «мне предложили
уроки физики в местном женском епархиальном училище, я согласился, а через
год ушел совсем из уездного училища». Константин Эдуардович несмотря на
свой физический недостаток - глухоту, был прекрасным педагогом.
В 1902 году хозяева дома, где жили Циолковские, затеяли капитальный
ремонт. Шума, стука, беспорядка Константин Эдуардович не выносил, и семье
пришлось переехать на новую квартиру. Ее сняли на глухой Лебедящевской
улице, далеко от места службы Константина Эдуардовича, но зато ближе к Оке
и Загородному саду — любимым местам его отдыха. Два года прожила семья на
новой квартире, здесь также переживали радости и беды. В год переезда
покончил с собой старший сын Игнатий, первокурсник Московского универ-
ситета, Игнатий был вторым ребенком в семье, в гимназии считался одним из
лучших учеников, особенные способности проявил в физике и математике, за
что был прозван товарищами Арxимедом.
Учитывая, что отцу трудно содержать такую большую семью, Игнатий работал
почти каждое лето репетитором, копил деньги на учебу в высшем учебном
заведении. С отличием окончив Калужскую мужскую гимназию, летом 1902 года
девятнадцатилетний юноша уехал в Москву, чтобы поступить в университет.
Сначала студенческая жизнь ему нравилась. Сестре Любови, работавшей в то
время сельской учительницей, он писал, что посещал театры, с восторгом
слушал Шаляпина. Потом сообщал, что собирается перевестись с физико-
математического факультета на медицинский. 5 декабря 1902 года пришла
телеграмма о гибели Игнатия. Он отравился цианистым калием. Позднее
Константин Эду-ардович узнал от товарищей сына, что последние дни Игнатий
не посещал университет, был грустным и задумчивым. Велико было горе отца,
потерявшего ребенка. Со свойственной ему самокритичностью он обвинял себя в
том, что не уберег сына, из-за занятости научной и педагогической работой,
не придал значения увлечению сына упаднической философией, не смог доказать
ему, что за жизнь, за свои идеи надо бороться.
Весной 1903 года Циолковский узнал о публикации в журнале «Научное
обозрение» его статьи «Исследование мировых пространств реактивными
приборами». Рукопись оказалась большой, и для печати в журнале пришлось
разделить ее на две части. Первая была напечатана в майском номере. Но в
связи с неожиданной смертью редактора тираж был изъят полицией и автор
получил всего один экземпляр. Не случайно на первой странице опубликованной
статьи К. Э. Циолковский написал карандашом: «Прошу хранить, как зеницу
ока, ибо это единственный экземпляр, вырванный мною из журнала», а на
внутренней стороне переплета еще одна запись: «Рукопись не возвращена».
«Издано ужасно- корректуры не было, формулы и номера перевраны и потеряли
смысл», но все-таки Циолковский был рад и этому.


6. Заслуженное признание.
Прослужив в уездных училищах (Калужском и Боровском) двадцать дет,
Константин Эдуардович подал в отставку и выхлопотал себе учительскую
пенсию. В епархиальном училище продолжал работать. Там было легче
преподавать, платили больше жалованья и, кроме того, были длительные
каникулы, во время которых он мог отдаться своим работам.
Константин Эдуардович продолжил свои научные изыскания, завершилась
работа над серьезнейшим научным трудом «Аэростат и аэроплан», написанным
после проведения огромного количества опытов по сопротивлению воздуха. Была
закончена работа над второй частью «Исследования мировых пространств
реактивными приборами». Она увидела свет в 1911—1912 годах в журнале
«Вестник воздухоплавания», редактором которого был

Новинки рефератов ::

Реферат: Из истории психологических тестов (Психология)


Реферат: Обязательства (Гражданское право и процесс)


Реферат: Лизинг (Менеджмент)


Реферат: Порядок подготовки органов внутренних дел к охране общественного порядка при проведении массовых мероприятий (Социология)


Реферат: Изобретение кинематографа и его влияние на восприятие мира (Искусство и культура)


Реферат: Некоммерческие организации в целом и Фонды в частности (Государство и право)


Реферат: Платежный баланс страны, его роль и назначение (Банковское дело)


Реферат: Вред куренья (Спорт)


Реферат: Коробка передач (Технология)


Реферат: Творчество Иоганна Себастьяна Баха (Музыка)


Реферат: АПК Украины (Ботаника)


Реферат: Вопросы менеджмента (Менеджмент)


Реферат: Верблюды (Биология)


Реферат: Женский бизнес (Менеджмент)


Реферат: Общественный и государственный строй (Право)


Реферат: Способности и одаренность в младшем школьном возрасте (Педагогика)


Реферат: Развитие паломнического и религиозно-познавательного туризма в Новгородской области (Туризм)


Реферат: Европейские фонды, поддерживающие культуру (Культурология)


Реферат: Искусство эпохи Возрождения (Искусство и культура)


Реферат: Бои на Кавказском хребте (История)



Copyright © GeoRUS, Геологические сайты альтруист