GeoSELECT.ru



Химия / Реферат: Определение хлоридов в сточных водах (Химия)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Определение хлоридов в сточных водах (Химия)



Летняя практика по химии

Лицей № 8



Реферат



Тема:


« Определение хлоридов в водах»



Исполнитель:
Жидкова Люба

Руководитель:
Громова Н. Г.
Вульфсон Н. Д.



Сосновый Бор
1999 год.



ВВЕДЕНИЕ

Хлориды относятся к главным ионам, содержание которых в речных и
озерных водах колеблется от доли миллиграммов до граммов в литре; в морских
и подземных водах концентрация хлоридов выше – до перенасыщенных растворов
и рассолов.
Основными источниками поступления хлоридов в водные объекты является
соленосные отложения, магматические породы, в состав которых входят
хлорсодержащие минералы (хлорапатит, содомит и др.), вулканические выбросы,
засоленные почвы, из которых они вымываются атмосферными осадками. Гораздо
большее количество хлоридов попадает в воду с промышленными и
хозяйственными сточными водами.
Хлориды в воде не склонны к образованию ионных пар. Они обладают
высокой миграционной способностью, что обусловлено хорошей растворимостью
их в воде, слабо выраженные способностью к сорбции взвесями и донными
отложениями и практическим отсутствием накопления водными организмами.
Повышенные концентрации хлоридов ухудшают вкусовые качества воды
делая её непригодной для питьевого водоснабжения, а так же уменьшает или
полностью исключает возможность использования для технических и
хозяйственных целей, и орошение сельскохозяйственных территорий. Для
водных объектов рыбохозяйственного назначения предельно допустимая
концентрация (ПДК) хлоридов – 300 мг/дм3, для объектов хозяйственно-
питьевого и культурно бытового назначения ПДК – 350 мг/дм3.
Хлориды относятся к устойчивым компонентам водной среды; пробы
предназначенные для определения хлоридов не консервируют.
Перед выполнением определения хлоридов в пробе воды неизвестного
состава следует провести качественную оценку их содержания. Для этого в 5
см3 анализируемой воды добавляют 3 капли 10% раствора AgNO3 и перемешивают.
О содержании хлоридов судят по интенсивности помутнения пробы (таблица 1).
В зависимости от предполагаемого содержания хлоридов выбирают
методику анализа и объёма анализируемой пробы (таблица 1).

Таблица 1.
Качественная оценка содержания хлоридов в воде и рекомендуемый для
тестирования объём пробы воды.
|Характер помутнения |Ориентировочное |Объём анализируемой |
|пробы |содержание хлоридов в|пробы (см3) |
| |воде (мг/дм3) | |
|Слабая муть |1-10 |100 |
|Сильная муть |10-50 |100 |
|Плавающие хлопья |50-100 |100 |
|Оседающие хлопья |100-250 |100 |
|Белый объёмистый |250-800 |50 |
|осадок | | |
| |больше 800 |(25 |


2. Метод определения.
Определение основано на образовании трудно растворимого осадка хлорида
серебра при прибавлении раствора нитрата серебра к анализируемой воде.
После полного осаждения хлоридов избыток ионов серебра реагирует с
индикатором- хроматом калия- с образованием красновато- оранжевого осадка
хромата серебра. Тестирование проводят в нейтральной или слабо щелочной
среде (рН 7-10), поскольку в кислой среде не образуется хромат серебра, а
в сильно щелочной возможно образование оксида серебра Ag2o. Мешающее
влияние на определение хлоридов могут оказать: высокая цветность, мутность,
сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (более
100 мг/дм3), фосфаты (более 25 мг/дм3), аммиак (более 5 мг/дм3). Точному
нахождению точки эквивалентности мешает также высокие (более 10 мг/дм3)
концентрации металлов- свинца, железа и др.
Устранить или значительно уменьшить влияние всех мешающих веществ
при высоком содержании хлоридов можно путем разбавлением пробы; если же
содержание хлоридов невелико ( что маловероятно для загрязненных вод), для
устранения мешающего влияния следует применить специальные приемы.
Мутность устраняют фильтрованием пробы, цветность – пропусканием
пробы через колонку с активированным углем или сорбцией на гидроксиде
алюминия.

3.Вычисление результатов определений.
Массовую концентрацию хлоридов в анализируемой воде находят по
формулам:
[pic] или [pic]
где Сх или Схэ – массовая концентрация хлоридов в воде, мг/дм3 или моль/дм3
эквивалента соответственно.
V- объем раствора нитрата серебра, израсходованного на тестирование
анализируемой пробы, см3;
V хол –объема раствора нитрата серебра израсходованного на тестирование
пробы, см3.
С – концентрация раствора нитрата серебра, моль/дм3 эквивалента.
V1- объем пробы воды, взятой для тестирования, см3.
Cx=[pic]
ПДК сол.Н2О=11000


4.Требования безопасности.
1. При выполнении определений массовой концентрации хлоридов в пробах
природных и очищенных сточных вод соблюдают требования безопасности,
установленные в «Правилах по технике безопасности при производстве
наблюдений и работ на сети Госкомгидромета», А., Гидрометеоиздат, 1983
год, или в «Инструкции по технике безопасности для гидрохимических
лабораторий органив по регулированию и охране вод» М., 1975.
2. По степени воздействия на организм вредные вещества, используемые при
выполнении определений, относятся к 2, 3, 4 классом опасности по ГОСТ
12.1.007.
3. Содержание используемых вредных веществ в воздухе рабочей зоны не должно
превышать предельно допустимых концентраций в соответствии с ГОСТ
12.1.005.


4.Аппаратура и реактивы.
1. Реактивы:
А) вода дистилированная по ГОСТ 6709
Б) хромат калия по ГОСТ 4459, ч. д. а
В) нитрат серебра по ГОСТ 1277, ч. д. а.
2. Аппаратура:
А) воронка лабораторная по ГОСТ 25336
Б) колбы мерные не ниже второго класса точность по ГОСТ 1770
Вместимостью 50 см3 2
В) бюретка не ниже второго класса точности по ГОСТ 20292
вместимостью 25 см3 –1
Г) пипетка с одной отметкой не ниже 2 класса точность по ГОСТ 20292
вместимостью 5 см3 –1
Д) пипетка градуированная не ниже второго класса точности по ГОСТ 20292
вместимостью 1 см3 –2
Е) колбы конические по ГОСТ 25336
вместимостью 250 см3 –2


5.Отбор и хранение проб.
Отбор проб производится в соответствии с ГОСТ 171.5.05. Пробы помещают в
стеклянную или полиэтиленовую посуду. Перед определением фильтруют через
мембранный фильтр 0,45 мкм, очищенной кипячением в дистиллированной воде.
Допустимо использование бумажных фильтров «синяя лента». При фильтровании
через любой фильтр первые порции фильтрации следует отбросить.
Хлориды являются одним из наиболее устойчивых компонентов, поэтому
определение модно проводить после выполнения анализа менее устойчивых
соединений. Пробы не консервируют, хранят при комнатной температуре.
6.Приготовление растворов и реактивов.
Раствор хромата калия, 10% 50г K2CrO4 взвешивают на технических весах,
растворяют в 150 см3 дистилированной воды, добавляют для удаления хлоридов
10% раствор AgNO3 до появления слабого красновато-ораньжевого осадка, дают
отстоятся в течении суток и затем фильтруют через фильтр “белая лента”. К
фильтрованному раствору добавляют 300 см3 дистилированной воды и
перемешивают. Хранят в склянке из темного стекла 3 мес.
Рабочий раствор нитрата серебра с концентрацией эквивалента 0,05 моль/дм3.
8,49 г AgNO3 растворяют в дистиллированой воде в мерной колбе вместимостью
1 дм3 , доводят до метки и перемешивают. При наличии мути раствор
отстаивают в течении нескольких дней и затем сифонируют прозрачную
жидкость. Хранят в склянке из темного стекла.
Точную концентрацию раствора определяют тестированием стандартного
раствора хлорида натрия не реже 1 раза в месяц.

7.Определение точной концентрации.
Для определения точной концентрации рабочего раствора нитрата серебра
с концентрацией 0,05 моль/дм3 эквивалента в коническую колбу вместимостью
250 см3 помещают пипеткой 10 см3 стандартного раствора хлорида натрия,
добавляют 90 см3 дистилированной воды и 1 см3 раствора хромата калия.
Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией
эквивалента 0,05 моль/дм3 до появления красновато-ораньжевого осадка.
Титрование повторяют 2-3 раза и при хлориде натрия, добавляют 90 см3
дистиллированной воды и 1 см3 раствора хромата калия. Тщательно
перемешивают и титруют раствором нитрата серебра с концентрацией
эквивалента 0,05 моль/дм3 до появления красновато-ораньжевого осадка.
Титрование повторяют 2-3 раза и при отсутствии расхожденя в объемах
растворов AgNO3 более 0,05 см3 за результат принимают среднюю величину.
Одновременно выполняют холостое определение , использую для титрования 100
см3 дистиллированной воды.



Список используемой литературы.
Руководящий документ « Методические указания. Аргентометрическое
определение хлоридов в водах».
А. П. Крешков «Основы аналитической химии»




Реферат на тему: Определение электропроводности лизина

МИНИСТЕРСТОВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Химический факультет

кафедра физической химии



Курсовая работа
на тему:

«Определение электропроводности лизина»



Выполнил: студент 2 курса 4 группы

Юденко Валерий

Научный руководитель: асс. Козадеров О.А.



Воронеж - 2000
Содержание

Введение 3

Обзор литературы 4

Измерение электропроводности растворов 6

Методика измерения электрической проводимости электролитов 6

Результаты эксперимента 7

Обработка результатов 10

Выводы 11

Литература 12



Введение
В зависимости от природы токопроводящих частиц и от их
электропроводности все вещества можно условно разделить на пять групп.
1. Непроводящие тела, или изоляторы.
2. Проводники первого рода, или электронопроводящие тела.
3. Полупроводники – вещества, в которых ток переносится электронами
и дырками.
4. Проводники второго рода, или ионные проводники, - вещества, в
которых ток переносится ионами.
5. Смешанные проводники – тела, сочетающие электронную ионную
проводимости.
Исследуемая ?-аминокислота относится к проводникам второго рода,
для которых характерна ионная проводимость.
Цель данной работы заключается в определении эквивалентной
электропроводности лизина и установлении зависимости эквивалентной
электропроводности от концентрации.



Обзор литературы
Мерой способности веществ проводить электрический ток является
электрическая проводимость L – величина, обратная электрическому
сопротивлению R. Так как,
[pic]
то
[pic]
где ? – удельное сопротивление, Ом*м; S – поперечное сечение, м2; 1/?
= – удельная электрическая проводимость.
Удельная электрическая проводимость раствора электролита (Ом-
1*см-1) – это электрическая проводимость объема раствора, заключенного
между двумя параллельными электродами, имеющими площадь 1 м2 и
расположенными на расстоянии 1 м друг от друга.
Кривая зависимости удельной электропроводности раствора от
концентрации обычно имеет максимум. Наличие максимумов кривых
становится понятным, если учесть, что в разбавленных растворах сильных
электролитов скорость движения ионов почти не зависит от концентрации,
и электропроводность растет почти прямо пропорционально числу ионов,
которое, в свою очередь, растет с концентрацией. В концентрированных
растворах сильных электролитов ионная атмосфера существенно уменьшает
скорость движения ионов, и электропроводность падает. В слабых
электролитах плотность ионной атмосферы мала и скорость движения ионов
мало зависит от концентрации, однако с увеличением концентрации
раствора заметно уменьшается степень диссоциации, что приводит к
уменьшению концентрации ионов и падению электропроводности.
Молярная электрическая проводимость раствора – мера электрической
проводимости всех тонов, образующихся при диссоциации 1 моль
электролита при данной концентрации. Она численно равна электрической
проводимости объема V(м3) раствора заключенного между двумя
параллельными электродами, с межэлектродным расстоянием 1 м, причем
каждый электрод имеет такую площадь, чтобы в этом объеме содержался
1 моль растворенного вещества. Между молярной и удельной
электрическими проводимостями имеется соотношение: ?= V= /с, где
? – молярная электрическая проводимость; - удельная электрическая
проводимость; V – разведение раствора, м3/моль; с – концентрация,
моль/м3. С увеличением разведения молярная электрическая проводимость
стремится к предельному значению[pic]. Эта величина отвечает
электрической проводимости гипотетического бесконечно разбавленного
раствора, характеризующегося полной диссоциацией электролита и
отсутствием сил электростатического взаимодействия между ионами.
Величина молярной электрической проводимости бесконечно разбавленного
раствора электролита представляет собой сумму двух независимых
слагаемых, каждая из которых соответствует определенному виду ионов.
Рост молярной электрической проводимости с увеличением разведения для
слабых электролитов может быть объяснен на основе представлений
классической теории электролитической диссоциации, согласно которой с
увеличением разведения степень диссоциации электролита возрастает и в
пределе стремится к 1. Для сильных электролитов, диссоциирующих
полностью, [pic] Изменение молярной электрической проводимости от
концентрации для сильных электролитов объясняется иначе. По теории
Дебая – Онзагера снижение молярной электрической проводимости при
переходе от бесконечно разбавленного раствора к растворам конечных
концентраций связано с уменьшением скоростей движения ионов. Это
объясняется появлением эффектов торможения движения ионов, возникающих
за счет сил электростатического взаимодействия между ионом и его
ионной атмосферой.
Эквивалентная электропроводность [pic] (Ом-1*см2*моль-1) – это
электрическая проводимость такого объема раствора, в котором
содержится 1 моль эквивалентов растворенного вещества, причем
электроды находятся на расстоянии 1 см друг от друга.

[pic]

Электропроводность растворов электролитов зависит в первую
очередь от природы электролита и растворителя. Если сравнить между
собой значения молярной электропроводности, измеренной в водных
растворах при бесконечно больших разбавлениях, то наибольшей она будет
у кислот, затем у щелочей и, наконец, у солей.
В водных растворах удельная электрическая проводимость
электролитов при повышении концентрации раствора сначала
увеличивается, достигает некоторого максимума и затем, при дальнейшем
увеличении концентрации, уменьшается. Положение максимума зависит от
природы электролита и его температуры. Эквивалентная
электропроводность водных растворов электролитов уменьшается с ростом
их концентрации. При нулевой концентрации, когда ?с = ?0, она
наибольшая. Часто молярную электропроводность ? выражают как функцию
разведения. В этом случае наблюдается рост электропроводности с
разведением, причем в области больших разведений она стремится к
некоторому пределу – к электропроводности при бесконечном разведении
[pic].
Кольрауш нашел, что в области малых концентраций молярная
электропроводность сильного электролита изменяется с концентрацией по
эмпирическому уравнению
[pic]
закон квадратного корня (А – эмпирическая константа). При несколько
более высоких концентрациях сильных электролитов лучшее согласие с
опытом дает уравнение
[pic]
закон кубического корня.
Температурная зависимость молярной электропроводности для узкого
интервала температур выражается уравнением:
[pic]
или, в более широком интервале:
[pic]
где ?t, ?t=0 – молярные электропроводности соответственно при
температуре t и 0 ?С; ? и ? – эмпирические коэффициенты.
На электропроводность слабых и сильных электролитов влияет кроме
температуры также давление, под которым находится раствор. Молярная
электропроводность для большинства сильных электролитов при
прогрессирующем увеличении давления вначале возрастает, достигает
некоторого максимума, а затем вновь уменьшается, часто до значений
более низких, чем те, которые наблюдаются при обычном давлении.

Измерение электропроводности растворов
Для измерения электрической проводимости раствора прибегают к
измерению его сопротивления. Раствор помещают в специальный сосуд,
имеющий два металлических электрода. Измерение может быть проведено
как с помощью постоянного, так и с помощью переменного тока.
Электропроводность электролитов обычно определяется при помощи
мостовой схемы, используемой для измерения сопротивления проводника
первого рода. В случае растворов электролитов применяются мосты,
работающие на переменном токе, так как прохождение постоянного тока
через растворы приводит к значительным ошибкам, связанным с явлениями
электролиза и поляризации (изменение состава раствора вблизи
электродов, изменение состояния электродов, наложение электродной
поляризации на подаваемое напряжение). Необходимость применения
переменного тока достаточно высокой частоты (для избежания указанных
ошибок) усложняет измерительную схему. Изменение направления тока
служит оптимальным средством для устранения поляризационного
сопротивления. Кроме моста она содержит генератор переменного тока, а
также специальные устройства для выпрямления тока перед прохождением
его через нуль-инструмент и для компенсации емкостных эффектов.
Основой установки для определения электропроводности раствора
электролита служит мост Уитстона, образованный контуром из четырех
сопротивлений. На одну из диагональ моста подается питание от
генератора синусоидального напряжения, а на другой диагонали
регистрируется сигнал так называемым индикатором нуля, в качестве
которого обычно применят осциллограф.
Электроды в сосуде изготовлены из платины. Для того чтобы понизить
поляризационное сопротивление, их платинируют. Этим резко повышают
площадь поверхности электродов, снижая тем самым плотность
протекающего тока. Сопротивление сосуда зависит не только от удельной
проводимости раствора, площади электродов и расстояния между ними, но
и от взаимного расположения и объема раствора в сосуде, так как в
переносе электричества участвует значительно больший объем раствора,
чем тот, который непосредственно заключен между электродами. Поэтому
расстояние и ориентация электродов, а также объем раствора должны быть
строго постоянными.


Методика измерения электрической проводимости электролита
Последовательным разбавлением готовили 5 растворов лизина в воде с
различными концентрациями: 0,05; 0,025; 0,01; 0,005 и 0,001М. Затем
наливали раствор в сосуд и подбирали сопротивление таким образом,
чтобы синусоида на осциллографе превратилась в прямую линию. В каждом
опыте находили постоянную сосуда, которую использовали для вычисления
удельных проводимостей:
[pic][pic]
где k-постоянная сосуда, см-1; R-сопротивление, Ом; - удельная
электропроводность раствора KCl при данной температуре (из таблицы).
Затем измеряли Rх каждого раствора аминокислоты и вычисляли удельные
проводимости. При этом делали поправку на собственную проводимость
воды:

Используя полученные значения удельных проводимостей, находили
эквивалентные проводимости: [pic]

Результаты эксперимента
Опыт проводили 3 раза, и были получены следующие результаты:

Опыт 1
|№ п/п|Концентраци| | | | |
| |я |*10-3 |?с, |[pic], |f |
| |Сэк, моль/л|Ом-1*см|Ом-1*см2*мол|Ом-1*см2*мо| |
| | |-1 |ь-1 |ль-1 | |
| 1 | 0.050 | 3.783 | 75.66 | | 0.868|
| | | | |87.20 | |
| 2 | 0.025 | 2.026 | 81.04 | | 0.929|
| 3 | 0.010 | 0.834 | 82.40 | | 0.945|
| 4 | 0.005 | 0.422 | 84.40 | | 0.968|
| 5 | 0.001 | 0.085 | 85.00 | | 0.975|


K=0,834; t=22°С
График зависимости эквивалентной
электропроводности
от концентрации в координатах ?с -
[pic]



Опыт 2
|№ п/п|Концентраци| | | | | |
| |я |*10-3 |?с, |[pic], |f | |
| |Сэк, моль/л|Ом-1*см|Ом-1*см2*мол|Ом-1*см2*мол| | |
| | |-1 |ь-1 |ь-1 | | |
| 1 | 0.05 | 3.637 | 72,74 | 96.00| 0.758| |
| 2 | 0.025 | 1,935 | 77,40 | | 0.806| |
| 3 | 0.01 | 0.875 | 87,50 | | 0.911| |
| 4 | 0.005 | 0.452 | 90,40 | | 0.942| |
| 5 | 0.001 | 0.091 | 91,00 | | 0.948| |


K=0,875; t=20°С

График зависимости эквивалентной
электропроводности
от концентрации в координатах ?с -
[pic]



Опыт 3
|№ п/п|Концентраци| | | | | |
| |я |*10-3 |?с, |[pic], |f | |
| |Сэк, моль/л|Ом-1*см|Ом-1*см2*мол|Ом-1*см2*мо| | |
| | |-1 |ь-1 |ль-1 | | |
| 1 | 0.05 | 3.120 | 62,40 | 74.6| 0.836| |
| 2 | 0.025 | 1,676 | 67,04 | | 0.899| |
| 3 | 0.01 | 0.721 | 72,10 | | 0.966| |
| 4 | 0.005 | 0.359 | 71,80 | | 0.962| |
| 5 | 0.001 | 0.071 | 71,00 | | 0.952| |


K=0,876; t=13°С

График зависимости эквивалентной
электропроводности
от концентрации в координатах
?с - [pic]



Обработка результатов
Для малых выборок использовали распределение Стьюдента, которое
связывает между собой ширину доверительного интервала, соответствующую
ему вероятность и объем выборочной совокупности.
Для выборки в n результатов рассчитывали среднее
[pic]
и дисперсию, характеризующую рассеяние результатов относительно
среднего
[pic]
Для характеристики рассеяния результатов в выборочной
совокупности использовали также стандартное отклонение

[pic]
и относительное стандартное отклонение значений
[pic]
Величину доверительного интервала измеряемой величины для
заданной доверительной вероятности рассчитывали, пользуясь
выражением
[pic]
где tpf – коэффициент Стьюдента при заданной вероятности; f=n-1; S
– стандартное отклонение измеряемой величины, рассчитанное для
выборочной совокупности из n данных. Доверительную вероятность
принимали равной 0,95.



Выводы
Исходя из полученных данных, можно сделать вывод, что
эквивалентная электропроводность лизина с увеличением концентрации
уменьшается (это показано на графиках). Также с уменьшением
температуры происходит и уменьшение эквивалентной электропроводности.



Литература
1. Антропов Л.И. Теоретическая электрохимия: Учеб. Для хим.- технолог.
Спец. Вузов. – 4-е изд., перераб. и доп. – М.: Высш. Шк., 1984. - 519
с.
2. Физическая химия. В 2 кн. Кн. 2. Электрохимия. Химическая кинетика
и катализ: Учеб. Для вузов/К.С.Краснов, Н.К.Воробьев, И.Н.Годнев и
др.; Под ред. К.С.Краснова – 2-е изд., перераб. и доп. – М.: Высш.
Шк., 1995. –319 с.
3. Курс физической химии. Под ред. Герасимова Я.И.



-----------------------
[pic]

[pic]

[pic]

???[pic]






Новинки рефератов ::

Реферат: Налог на прибыль (Налоги)


Реферат: Творческое исследовательское задание (Педагогика)


Реферат: Мартин Иден (Литература : зарубежная)


Реферат: Погребальный комплекс в Гизе (История)


Реферат: Эволюция менеджмента (Менеджмент)


Реферат: Самоубийство Катерины в драме Островского: Сила или слабость? (Литература)


Реферат: Металлы в алхимии (Химия)


Реферат: Методы и модели демографического прогнозирования (Социология)


Реферат: Тема Родины в творчестве А. Блока (Литература)


Реферат: Алюминий (Химия)


Реферат: Финансовый менеджмент и ПК (Финансы)


Реферат: Основы документационной системы управления (Предпринимательство)


Реферат: Культура народу України XIX – XX столітть (Искусство и культура)


Реферат: Инвестиционный проект (Инвестиции)


Реферат: Государственное устройство Австралии (Политология)


Реферат: Почва, ее состав и особенности (Биология)


Реферат: Технология хранения и переработка сельскохозяйственных продуктов (Сельское хозяйство)


Реферат: Проектирование локальной вычислительной сети (Компьютеры)


Реферат: Екатерина Вторая Алексеевна (Исторические личности)


Реферат: Концепция культуры Карла Юнга (Искусство и культура)



Copyright © GeoRUS, Геологические сайты альтруист