GeoSELECT.ru



Астрономия / Реферат: Солнце (Астрономия)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Солнце (Астрономия)



СОЛНЦЕ



БОРИСОВ
ВЯЧЕСЛАВ 26/03/2002



Оглавление:

1. Общие сведения о Солнце…………………………………...………………..3

2. Всегда ли существовало Солнце?………………………………………….....3

3. Как устроено Солнце………………………………………………………….3 – 4

4. Солнечная активность………………………………………………………....5 – 7

5. Строение Солнца: ……………………………………………………………..7 – 8

6. Служба Солнца………………………………………………………………...8

7. Солнечное затмение…………………………………………………………...8 – 9

8. Конец Солнца…………………………………………………………………..10

9. Список используемой литературы…………………………………………….11



1.Общие сведения о Солнце

Солнце - центральное тело Солнечной системы представляет собой очень
горячий плазменный шар. Солнце - ближайшая к Земле звезда. Свет от него
доходит до нас за 8,3 минуты. Солнце решающим образом повлияло на
образование всех тел Солнечной системы и создало те условия, которые
привели к возникновению и развитию жизни на земле. Ещё задолго до
наступления НТР люди наблюдали Солнце. Они знали его животворную силу,
почитали и поклонялись ему как богу. Кроме того, люди использовали его для
исчисления времени.
Культовые сооружения в древние времена строились большей частью так, чтобы
по ним можно было определить точки восхода и захода Солнца в начале весны и
лета.

2. Всегда ли существовало Солнце?

Наше Солнце светит уже много млн. лет. Сегодня известно, что оно возникло
вместе с планетами своей системы из большого холодного облака газа и пыли.
Сначала образовалось сферическое облако, которое, сжимаясь, вращалось всё
быстрее. Под действием центробежных сил оно превратилось в диск. Почти
всё вещество облака сгустилось в центре этого диска в большой шар. Именно
так, по-видимому, возникло Солнце. По краям диска сформировались меньшие
небесные тела, планеты и луны. Только что родившееся Солнце сначала было
холодным, но оно всё время сжималось, становясь, становясь при этом горячее
и горячее. Так родилась новая звезда. Она окружена планетами. Есть среди
них и ЗЕМЛЯ. Благодаря Солнцу на ней появилась жизнь.

3.Как устроено Солнце.
Солнце является массивным самосветящимся газовым шаром. Человеку трудно
даже представить, что такое Солнце на самом деле. В центре его температура
15 000 000 градусов, давление в 200 раз выше, чем давление воздуха в
земной атмосфере,
плотность вещества в 7 раз больше чем у самого плотного земного металла.
Перенос энергии из центра наружу занимает около 10млн. лет. Излучающая
поверхность Солнца называется Фотосферой. Фотосфера имеет зернистую
структуру, называемую грануляцией. Каждое такое « зерно» размером почти с
Германию, и представляет собой поднявшийся на поверхность поток горячего
вещества. На фотосфере часто можно увидеть относительно небольшие тёмные
области - Солнечные пятна. Над Фотосферой следующий слой, разреженный слой,
называемый Хромосферой, т.е.
«окрашенной сферой». Такое название хромосфера получила благодаря красному
цвету. И, наконец, над ней находится очень горячая, но чрезвычайно
разряженная часть солнечной атмосферы - корона



[pic]



4.Солнечная активность.

Сильный источник теплового радиоизлучения – Солнце. В периоды повышенной
солнечной активности появляется радиоизлучение нетеплового характера.
Нетепловое радиоизлучение наблюдается и у планет Солнечной системы. На
некоторых больших планетах, особенно на Юпитере, происходят сильные
всплески нетеплового радиоизлучения – облака ионизированного межзвездного
газа. Солнечная активность – совокупность явлений, периодически возникающих
в солнечной атмосфере. Проявления солнечной активности тесно связаны с
магнитными свойствами солнечной плазмы. Возникновение активной области
начинается с постепенного увеличения магнитного потока в некоторой области
фотосферы. В соответствующих местах хромосферы вскоре после этого
наблюдается увеличение яркости в линиях водорода и кальция. Такие области
называют флоккулами. Примерно в тех же участках на Солнце в фотосфере (т.е.
несколько глубже). При этом также наблюдается увеличение яркости в белом
(видимом) свете - факелы. Увеличение энергии, выделяющейся в области факела
и флоккула, является следствием увеличивающейся до нескольких десятков
эрстед напряженности
Магнитного поля. Через 1 -2 дня после появления флоккула в активной области
появляются солнечные пятна в виде маленьких черных точек – пор. Многие из
них вскоре исчезают, и лишь отдельные поры за два – три дня превращаются в
крупные темные образования. Типичное солнечное пятно имеет размеры в
несколько десятков тысяч километров и состоит из темной центральной части
– тени и волокнистой полутени. Важнейшая особенность пятен – наличие в них
сильных магнитных полей, достигающих в области тени наибольшей
напряженности, в несколько тысяч эрстед. В целом пятно представляет собой
выходящую в фотосферу трубку силовых линий магнитного поля, целиком
заполняющих одну или несколько ячеек хромосферной сетки. Верхняя часть
трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе.
Поэтому вокруг тени магнитные силовые линии принимают направление, близкое
к горизонтальному. Полное, суммарное давление в пятне включает в себя
давление магнитного поля и уравновешивается давлением окружающей фотосферы,
поэтому газовое давление в пятне оказывается в меньшим, чем в фотосфере.
Магнитное поле как бы расширяет пятно изнутри. Кроме того, магнитное поле
подавляет конвективные движения газа, переносящие энергию из глубины вверх.
Вследствие этого в области пятна температура оказывается меньше примерно на
1000 К. Пятно как бы охлажденная и скованная магнитным полем яма в
солнечной фотосфере.
Большей частью пятна возникают целыми группами, в которых, однако,
выделяются два больших пятна. Одно, небольшое, - на западе, а другое, чуть
поменьше, - на востоке. Вокруг и между ними часто бывает множество мелких
пятен. Такая группа пятен называется биполярной, потому что у обоих больших
пятен всегда противоположная полярность магнитного поля. Они как бы связаны
с одной и той же трубкой силовых линий магнитного поля, которая в виде
гигантской петли вынырнула из – под фотосферы, оставив концы где-то в
ненаблюдаемых , глубоких слоях. То пятно, которое соответствует выходу
магнитного поля из фотосферы, имеет северную полярность, а то, в области
которого силовые линии входят обратно под фотосферу, - южную.
Самое мощное проявление солнечной активности – это вспышка. Они
происходят в сравнительно небольших областях хромосферы и короны,
расположенных над группами солнечных пятен. По своей сути вспышка - это
взрыв, вызванный внезапным сжатием солнечной плазмы. Сжатие происходит под
давлением магнитного поля и приводит к образованию длинного плазменного
жгута или ленты. Длина такого образования составляет десятки, и даже сотни
тысяч километров. Общее количество энергии, выделяющееся в результате
взрыва, может составлять в зависимости от его силы от
100000000000000000000 до 10000000000000000000000000 Дж. Продолжается
вспышка обычно около часа.
Мощность энерговыделения 1 г. вещества в области вспышки в среднем в
десять в двенадцатой степени раз больше, чем мощность энерговыделения 1 г.
вещества всего Солнца. Это говорит о том, что источник энергии вспышек
отличается от источника энергии всего Солнца. Хотя детально физические
процессы, приводящие к возникновению вспышек, еще не изучены, ясно, что они
имеют электромагнитную природу. Основной жгут вспышки обычно располагается
вдоль нейтральной линии магнитного поля – направления, разделяющего области
различной полярности. При некоторых условиях возникает неустойчивость,
магнитные поля вблизи нейтральной линии сильно сближаются, сливаются и
нейтрализуются (аннигилируют). При этом энергия магнитного поля переходит в
другие формы: в излучение, тепло и кинетическую энергию движущихся газов. В
электромагнитное излучение переходит примерно половина всей энергии. Это
излучение может наблюдаться в видимых ультрафиолетовых, рентгеновских лучах
и даже гамма – лучах. Особенно много энергии излучается в красной
спектральной линии водорода, в которой вспышки чаще всего и наблюдаются при
помощи узкополосных светофильтров. Энергия, излучаемая вспышкой в
коротковолновой области спектра, состоит из ультрафиолетовых и
рентгеновских лучей. Эти лучи испускаются очень сильно ионизованными
атомами. Например, во время некоторых вспышек наблюдалось
рентгеновское излучение, характерное для атома железа, лишенного 25
электров, которые, по сути дела, представляет собой атомное ядро,
обладающее подобно водороду, только одним электроном!
Другая половина энергии вспышки идет на ускорение, иногда до
релятивистских скоростей, элементарных частиц, главным образом электронов и
протонов. Поток таких частиц добавляется во время вспышек к общему потоку
космических лучей, наблюдаемых вблизи Земли. Сталкиваясь с другими атомами,
энергетические ядра вызывают их необычайно сильную рентгеновскую ионизацию,
а в некоторых случаях проникают даже через электронные оболочки атомов и
приводят к ядерным превращениям, сопровождающимся испусканием гамма –
квантов. Как и всякий сильный взрыв, вспышка порождает ударную волну,
распространяющуюся как вверх в корону, так и горизонтально вдоль
поверхностных слоёв солнечной атмосферы. Излучение солнечных вспышек
оказывает особо сильное воздействие на верхний слой земной атмосферы и
ионосферу и приводит к возникновению целого комплекса геофизических
явлений. Наиболее грандиозными образованиями в солнечной атмосфере являются
протуберанцы – сравнительно плотные облака газов, возникающие в солнечной
короне или выбрасываемые в нее из хромосферы. Типичный протуберанец имеет
вид гигантской светящейся арки, опирающейся на хромосферу и образованной
струями и потоками более плотного и холодного, чем окружающая корона,
вещества. Иногда это вещество удерживается прогнувшимися под его тяжестью
силовыми линиями магнитного поля, а иногда медленно стекает вдоль магнитных
силовых линий. Имеется множество различных типов протуберанцев. Области
Солнца, в которых наблюдаются интенсивные проявления солнечной активности,
называются центрами солнечной активности. Общая активность Солнца,
характеризуемая количеством и силой проявления центров солнечной
активности, периодически изменяется. Обычно пользуются наиболее простым и
раньше всех введенным индексом солнечной активности – числами Вольфа(W).
Числа Вольфа пропорциональны сумме полного числа пятен, наблюдаемых в
данный момент на Солнце(f), и удесятеренного числа групп, которые они
образуют(g ).

W=R (f+10g)

Где R – коэффициент, учитывающий качество инструмента и производимых с его
помощью наблюдении. Эпоху, когда количество центров активности наибольшее,
считают максимумом солнечной активности, а когда их совсем нет или почти
нет – минимумом. Максимумы и минимумы чередуются в среднем с периодом в 11
лет. Это составляет 11 циклов солнечной активности.

5.Строение Солнца:
а) Солнечная Корона
Солнечная Корона – самые внешние, очень разряженные слои атмосферы
Солнца. Во время полной фазы солнечного затмения вокруг диска Луны, который
закрывает от наблюдателя яркую фотосферу, внезапно как - бы вспыхивает
лучистое жемчужное сияние. Это на несколько секунд становится видимой
солнечная Корона. Важной особенностью короны является ее лучистая
структура. Лучи бывают различной длины, вплоть до десятка и более солнечных
радиусов. После изобретения коронографа, солнечную корону можно наблюдать
вне затмений. Общая форма короны меняется с фазами цикла солнечной
активности: в годы максимума корона почти сферична, в годы минимума она
сильно вытянута вдоль экватора. Корона представляет собой сильно
разреженную высокоионизированную плазму с температурой 1 – 2 млн. градусов.
Причина столь большого нагрева солнечной короны связана с волновыми
движениями, возникающими в конвективной зоне Солнца. Это связано с тем, что
находящиеся в короне свободные электроны, возникающие в результате сильной
ионизации газов, рассеивают излучения, приходящие от фотосферы.

б) Фотосфера.
Доступная непосредственному наблюдению светящаяся « поверхность»
Солнца называется фотосферой. Фотосфера представляет собой нижний слой
солнечной атмосферы, толщина которого 300 – 400 км. Именно она излучает
практически всю приходящую к нам солнечную энергию, так как из-за
непрозрачности вещества фотосферы солнечное излучение из более глубоких
слоев Солнца к нам уже не доходит и их увидеть невозможно. Плотность
фотосферы не превышает порядка - 10000 кгм3, а число атомов
преобладающего в фотосфере водорода- порядка 100000000000000000 в объеме 1
см 3. Температура в фотосфере нарастает с глубиной, в среднем она близка к
6000 К.

В) Хромосфера.
Хромосфера - внешняя область атмосферы Солнца. Яркость хромосферы во
много раз меньше яркости фотосферы. Из-за рассеяния солнечного света в
земной атмосфере эти слабосветящиеся внешние оболочки не удается видеть вне
затмения без специальных приспособлений.
Хромосфера простирается до высоты 10 – 14 тыс. км. В самых нижних слоях
температура около 5000 К, она начинает постепенно расти, достигая в верхних
слоях атмосферы (от 20000 до 50000 К). В хромосфере наблюдаются самые
мощные и быстроразвивающиеся процессы, называемые вспышками.



6.Служба Солнца.
Сильная зависимость жизни всей Земли от деятельности Солнца и особенно
воздействие проявлений солнечной активности на состояние верхних слоёв
земной атмосферы определяют большое значение контроля за состоянием Солнца
для практической деятельности людей. Радиационная опасность для
космонавтов, возникающая во время солнечных вспышек, требует постоянного
наблюдения этих явлений и поисков способов их предсказаний. Связанные со
вспышками нарушение связи, магнитные бури представляют серьезные
препятствия для навигации судов и пилотирования самолетов. Существует
зависимость важнейших биологических процессов от солнечной активности. Для
решения подобных задач в международном масштабе организована система
непрерывных наблюдений Солнца, называемая службой Солнца. В этих
наблюдениях участвуют все крупные астрофизические обсерватории, а также
множество специальных станции . Они расположены почти равномерно по всем
географическим долготам с тем, чтобы обеспечивалось непрерывная слежение за
Солнцем, по возможности не слишком зависящее от погодных условии.
Основные задачи службы Солнца – регистрация центров солнечной
активности (например, определение ежедневных чисел Вольфа и др.), а также
всех солнечных вспышек. Собранные материалы сопоставляются с данными
геофизических исследований. Для более эффективного решения проблем,
связанных с солнечно-земными связями, организуется специальные
международные комплексные программы исследовании, выполняемые в
определенные периоды времени, например международный геофизический год, год
спокойного Солнца и т.д.



7.Солнечное затмение.
Если Луна оказывается между Солнцем и Землей в новолуние, тогда случаются
солнечные затмения. При полном затмении Луна совсем закрывает солнечный
диск. Среди бела дня вдруг на несколько минут наступают сумерки и
невооруженному глазу становятся видны слабо светящаяся корона Солнца и
ярчайшие звезды.



[pic]

1. Полное Солнечное затмение.



Земля Луна
Солнце



[pic]

2. Кольцеобразное Солнечное затмение.



8.Конец Солнца.
Мы знаем, что Солнце имело запас топлива на 10-11 млрд. лет. Для того,
чтобы точно предсказать, сколько еще будет светить Солнце, мы должны знать,
какую часть жизни оно уже прожило. Если подсчитать, что метеоритам и лунным
камням не более 5 млрд. лет, значит таков возраст Солнца. В конце своей
жизни Солнце не будет просто медленно остывать, как думали раньше, Звезды
не умирают тихо, а заканчивают существование в борьбе со смертью. Когда
полностью выгорит солнечное ядро, атомный огонь начнет медленно пожирать
внешние слои звезды. Солнце начнет увеличиваться в размерах и превратится в
огромную красную звезду. Оно поглотит Меркурии и Венеру и нагреет Землю до
большой температуры. Жизнь исчезнет, вода испарится из рек и океанов. Затем
во внешних слоях Солнца возникнет новый источник энергии: из гелия -
тяжелые атомы. Внешняя оболочка будет сброшена, а ядро сожмется до белого
карлика. Но Солнце не останется в состоянии белого карлика , а закончит
жизнь в виде черной дыры.



Список используемой литературы :

1. Учебник «астрономия» 11кл…………………. «ПРОСВЕЩЕНИЕ» 1994

2. Книга «Солнце» ………………………………...«ПРОСВЕЩЕНИЕ» 1997

3. «Энциклопедия юного астронома»……………………………………1981



НЕ сдавайте Этот реферат в Шк № 79. СПб (особенно Бойко И.А).




Реферат на тему: Солнце и его влияние на Землю

СОДЕРЖАНИЕ


1) Введение
2) История наблюдений за Солнцем
3) Общая характеристика
4) Внутренне строение
5) Атмосфера Солнца
Солнечные пятна
Факелы
6) Хромосфера
7) Солнечная корона
8) Путь Солнца среди звезд
Суточный путь Солнца
Годичный путь Солнца
9) Солнечные затмения
10) Ультрафиолетовое излучение Солнца
11) Место Солнца в галактике
12) Циклы солнечной активности
13) Как Солнце влияет на Землю
Энергия солнечного света
Солнечный ветер и межпланетные магнитные поля
Бомбардировка энергичными частицами
Активность Солнца и здоровье людей
14) Список использованной литературы



ВВЕДЕНИЕ

Каждому наверняка известно, что на Солнце нельзя смотреть невооруженным
глазом, а тем более в телескоп без специальных, очень темных светофильтров
или других устройств, ослабляющих свет. Пренебрегая этим советом,
наблюдатель рискует получить сильнейший ожог глаза. Самый простой способ
рассматривать Солнце – спроецировать его изображение на белый экран. При
помощи даже маленького любительского телескопа можно получить увеличенное
изображение солнечного диска. Что же мы можем увидеть на этом изображении?
Прежде всего обращает на себя внимание резкость солнечного края. Солнце –
газовый шар, не имеющий четкой границы, а плотность его убывает постепенно.
Почему же в таком случае мы видим его резко очерченным? Дело все в том, что
практически все видимое излучение Солнца исходит из очень тонкого слоя,
который имеет специальное название – фотосфера (от греческого – "сфера
света"). Его толщина не превышает 300 километров. Именно этот тонкий слой и
создает у наблюдателя иллюзию того, что Солнце имеет "поверхность"


ИСОРИЯ НАБЛЮДЕНИЙ


История телескопических наблюдений Солнца начинается с наблюдений,
выполненных Г. Галлилеем в 1611 году; были открыты солнечные пятна,
определён период вращения Солнца вокруг своей оси. В 1843 году немецкий
астроном Г. Швабе обнаружил цикличность солнечной активности. Развитие
методов спектрального анализа позволило изучить физические условия на
Солнце. В 1814 году Й. Фраунгофер обнаружил тёмные линии поглощения в
спектре Солнца - это положило начало изучению химического состава Солнца. С
1836 года регулярно ведутся наблюдения затмений Солнца, что привело к
обнаружению короны и хромосферы Солнца, а также солнечных
протуберанцев. В 1913 году американский астроном Дж. Хейл наблюдал
зеемановское расщепление фраунгоферовых линий спектра солнечных пятен и
этим доказал существование на Солнце магнитных полей. К 1942 году шведский
астроном Б. Эдлен и другие отождествили несколько линий спектра солнечной
короны с линиями высокоионизированных элементов, доказав этим высокую
температуру в солнечной короне. В 1931 году Б. Лио изобрёл солнечный
коронограф, позволивший наблюдать корону и хромосферу вне затмений. В
начале 40-х годов XX века было открыто радиоизлучение Солнца. Существенным
толчком для развития физики Солнца во второй половине XX века послужило
развитие магнитной гидродинамики и физики плазмы. После начала космической
эры изучение ультрафиолетового и рентгеновского излучения Солнца ведётся
методами внеатмосферной астрономии с помощью ракет, автоматических
орбитальных обсерваторий на спутниках Земли, космических лабораторий с
людьми на борту.


ОБЩАЯ ХАРАКТЕРИСТИКА


Солнце, центральное тело солнечной системы, представляет собой
раскалённый плазменный шар; Солнце - ближайшая к Земле звезда. Масса
Солнца 1,990•10530 кг (в 332958 раз больше массы Земли). В Солнце
сосредоточено 99,866% массы Солнечной системы. Солнечный параллакс
равен 8,794" (4,263•105 радиан). Расстояние от Земли до Солнца меняется
от 1,4710•10511 м (в январе) до 1,5210•10511 (в июле), составляя в среднем
1,4960•10511 м. Это расстояние принято считать одной астрономической
единицей. Средний угловой диаметр Солнца составляет 1919,26" (9,305•105-
3 рад), чему соответствует линейный диаметр Солнца, равный 1,392•х1059 м
(в 109 раз больше диаметра экватора Земли). Средняя плотность Солнца
1,41•1053 кг/м. Ускорение свободного падения на поверхности Солнца
составляет 273,98 м/сек. Вторая космическая скорость на поверхности
Солнца равна 6,18•1055 м/сек. Эффективная температура поверхности Солнца,
определяемая согласно закону излучения Стефана-Больцмана, по полному
излучению Солнца равна 5770 К.
Вращение Солнца вокруг оси происходит в том же направлении, что и
вращение Земли, в плоскости, наклонённой на 7°15' к плоскости орбиты
Земли (эклиптике). Скорость вращения определяется по видимому движению
различных деталей в атмосфере Солнца и по сдвигу спектральных линий в
спектре края диска Солнца вследствие эффекта Доплера. Таким образом было
обнаружено, что период вращения Солнца неодинаков на разных широтах.
Положение различных деталей на поверхности Солнца определяется с помощью
гелиографических координат, отсчитываемых от солнечного экватора
(гелиографическая широта) и от центрального меридиана видимого диска
Солнца или от некоторого меридиана, выбранного в качестве начального (так
называемого меридиана Каррингтона). При этом считают, что Солнце
вращается как твёрдое тело. Один оборот относительно Земли точки с
гелиографической широтой 17° совершают за 27,275 суток (синодический
период). Время оборота на той же широте Солнца относительно звёзд
(сидерический период) - 25,38 суток. Угловая скорость вращения 7f 0для
сидерического вращения изменяется с гелиографической широтой 7w0 по
закону: 7w 0=14,33°-3°sin 52 7f в сутки. Линейная скорость вращения на
экваторе Солнца - около 2000 м/сек.
Солнце как звезда является типичным жёлтым карликом и располагается в
средней части главной последовательности звёзд на диаграмме Герцшпрунга-
Рессела. Видимая фотовизуальная звёздная величина Солнца равна -26,74,
абсолютная визуальная звёздная величина M 4v равна +4,83. Показатель цвета
Солнца составляет для случая синей (В) и визуальной (М) областей спектра
M 4B 0-M 4V 0=0,65. Спектральный класс Солнца G2V. Скорость движения
относительно совокупности ближайших звёзд 19,7•1053 м/сек. Солнце
расположено внутри одной из спиральных ветвей нашей Галактики на расстоянии
около 10 кпс от её центра. Период обращения Солнца вокруг центра Галактики
около 200 миллионов лет. Возраст Солнца - около 5•1059 лет.


ВНУТРЕННЕЕ СТРОЕНИЕ


Внутреннее строение Солнца определено в предположении, что оно является
сферически симметричным телом и находится в равновесии. Уравнение переноса
энергии, закон сохранения энергии, уравнение состояния идеального газа,
закон Стефана-Больцмана и условия гидростатического, лучистого и
конвекционного равновесия вместе с определяемыми из наблюдений значениями
полной светимости, полной массы и радиуса Солнца и данным о его химическом
составе дают возможность построить модель внутреннего строения Солнца.
Полагают, что содержание водорода в Солнце по массе около 70%, гелия
около 27%, содержание всех остальных элементов около 2,5%. На основании
этих предположений вычислено, что температура в центре Солнца составляет
10-15•1056 К, плотность около 1,5•1055 кг/м, давление 3,4•10516 н/м (около
3•10511 атмосфер).Считается, что источником энергии, пополняющим потери на
излучение и поддерживающим высокую температуру Солнца, являются ядерные
реакции, происходящие в недрах Солнца. Среднее количество энергии,
вырабатываемое внутри Солнца, составляет 1,92 эрг/г/сек. Выделение энергии
определяется ядерными реакциями, при которых водород превращается в
гелий. На Солнце возможны две группы термоядерных реакций: так называемый
протон-протонный (водородный) цикл и углеродный цикл (цикл Бете).
Наиболее вероятно, что на Солнце преобладает протон-протонный цикл,
состоящий из трёх реакций, в первой из которых из ядер водорода образуются
ядра дейтерия (тяжёлый изотоп водорода, атомная масса; во второй из
ядер водорода образуются ядра изотопа гелия с атомной массой 3 и,
наконец, в третьей из них образуются ядра устойчивого изотопа гелия с
атомной массой 4.
Перенос энергии из внутренних слоёв Солнца в основном происходит путём
поглощения электромагнитного излучения, приходящего снизу, и
последующего переизлучения. В результате понижения температуры при
удалении от Солнца постепенно увеличивается длина волны излучения,
переносящего большую часть энергии в верхние слои. Перенос энергии
движением горячего вещества из внутренних слоёв, а охлаждённого внутрь
(конвекция) играет существенную роль в сравнительно более высоких слоях,
образующих конвективную зону Солнца, которая начинается на глубине порядка
0,2 солнечных радиуса и имеет толщину около 1058 м. Скорость конвективных
движений растёт с удалением от центра Солнца и во внешней части
конвективной зоны достигает (2-2,5)х1053 м/сек. В ещё более высоких слоях
(в атмосфере Солнца) перенос энергии опять осуществляется излучением. В
верхних слоях атмосферы Солнца (в хромосфере и короне) часть энергии
доставляется механическими и магнитогидродинамическими волнами, которые
генерируются в конвективной зоне, но поглощаются только в этих слоях.
Плотность в верхней атмосфере очень мала, и необходимый отвод энергии за
счёт излучения и теплопроводности возможен только, если кинетическая
энергия этих слоёв достаточно велика. Наконец, в верхней части солнечной
короны большую часть энергии уносят потоки вещества, движущиеся от Солнца,
так называемый солнечный ветер. Температура в каждом слое устанавливается
на таком уровне, что автоматически осуществляется баланс энергии:
количество приносимой энергии за счёт поглощения всех видов излучения,
теплопроводностью или движением вещества равно сумме всех
энергетических потерь слоя.
Полное излучение Солнца определяется по освещённости, создаваемой им
на поверхности Земли, – около 100 тыс. лк, когда Солнце находится в
зените. Вне атмосферы на среднем расстоянии Земли от Солнца освещённость
равна 127 тысяч лк. Сила света Солнца составляет 2,84•10527 свечей.
Количество энергии, приходящее в одну минуту на площадку в 1 см,
поставленную перпендикулярно солнечным лучам за пределами атмосферы на
среднем расстоянии Земли от Солнца, называют солнечной постоянной. Мощность
общего излучения Солнца - 3,83•10526 ватт, из которых на Землю попадает
около 2•10517 ватт, средняя яркость поверхности Солнца (при наблюдении вне
атмосферы Земли) составляет 1,98•1059 нт, яркость центра диска Солнца -
2,48•1059 нт. Яркость диска Солнца уменьшается от центра к краю, причём
это уменьшение зависит от длины волны, так что яркость на краю диска
Солнца для света с длиной волна 3600А составляет 0,2 яркости его центра, а
для 5000А - около 0,3 яркости центра диска Солнца. На самом краю диска
Солнца яркость падает в 100 раз на протяжении менее одной секунды дуги,
поэтому граница диска Солнца выглядит очень резкой.
Спектральный состав света, излучаемого Солнцем, то есть распределение
энергии в центре Солнца (после учёта влияния поглощения в земной атмосфере
и влияния фраунгоферовых линий), в общих чертах соответствует
распределению энергии в излучении абсолютно чёрного тела с температурой
около 6000 К. Однако в отдельных участках спектра имеются заметные
отклонения. Максимум энергии в спектре Солнца соответствует длине волны
4600 А. Спектр Солнца – это непрерывный спектр, ни который наложено более
20 тысяч линий поглощения (фраунгоферовых линий). Более 60% из них
отождествлено со спектральными линиями известных химических элементов
путём сравнения длин волн и относительной интенсивности линии поглощения в
солнечном спектре с лабораторными спектрами. Изучение фраунгоферовых
линий даёт сведения не только о химическом составе атмосферы Солнца, но и о
физических условиях в тех слоях, в которых образуются те или иные
поглощения. Преобладающим элементом на Солнце является водород.
Количество атомов гелия в 4-5 раз меньше, чем водорода. Число атомов
всех других элементов вместе взятых, по крайней мере, в 1000 раз меньше
числа атомов водорода. Среди них наиболее обильны кислород, углерод,
азот, магний, железо и другие. В спектре Солнца можно отождествить также
линии, принадлежащие некоторым молекулам и свободным радикалам: OH, NH,
CH, CO и другим.
Магнитные поля на Солнце измеряются главным образом по зеемановскому
расщеплению линий поглощения в спектре Солнца. Различают несколько типов
магнитных полей на Солнце. Общее магнитное поле Солнца невелико и
достигает напряжённости в 1 этой или иной полярности и меняется со
временем. Это поле тесно связано с межпланетным магнитным полем и его
секторной структурой. Магнитные поля, связанные с солнечной активностью,
могут достигать в солнечных пятнах напряжённости в несколько тысяч.
Структура магнитных полей в активных областях очень запутана, чередуются
магнитные полюсы различной полярности. Встречаются также локальные
магнитные области с напряжённостью поля в сотни вне солнечных пятен.
Магнитные поля проникают и в хромосферу, и в солнечную корону.
Большую роль на Солнце играют магнитогазодинамические и плазменные
процессы. При температуре 5000 - 10000 К газ достаточно ионизирован,
проводимость его велика и благодаря огромным масштабам солнечных явлений
значение электромеханических и магнитомеханических взаимодействий весьма
велико.

АТМОСФЕРА СОЛНЦА

Атмосферу Солнца образуют внешние, доступные наблюдениям слои. Почти всё
излучение Солнца исходит из нижней части его атмосферы, называемой
фотосферой. На основании уравнений лучистого переноса энергии, лучистого
и локального термодинамического равновесия и наблюдаемого потока излучения
можно теоретически построить модель распределения температуры и плотности
с глубиной в фотосфере. Толщина фотосферы около трёхсот километров, её
средняя плотность 3•104-5 кг/м. Температура в фотосфере падает по мере
перехода к более внешним слоям, среднее её значение порядка 6000 К, на
границе фотосферы около 4200 К. Давление меняется от 2•1054 до 1052 н/м.
Существование конвекции в подфотосферной зоне Солнца проявляется в
неравномерной яркости фотосферы, видимой её зернистости - так называемой
грануляционной структуре. Гранулы представляют собой яркие пятнышки более
или менее круглой формы. Размер гранул 150 - 1000 км, время жизни 5 - 10
минут, отдельные гранулы удаётся наблюдать в течении 20 минут. Иногда
гранулы образуют скопления размером до 30 тысяч километров. Гранулы ярче
межгранульных промежутков на 20 - 30%, что соответствует разнице в
температуре в среднем на 300 К. В отличие от других образований, на
поверхности Солнца грануляция одинакова на всех гелиографических широтах и
не зависит от солнечной активности. Скорости хаотических движений
(турбулентные скорости) в фотосфере составляют по различным определениям 1-
3 км/сек. В фотосфере обнаружены квазипериодические колебательные
движения в радиальном направлении. Они происходят на площадках размерами 2-
3 тысячи километров с периодом около пяти минут и амплитудой скорости
порядка 500 м/сек. После нескольких периодов колебания в данном месте
затухают, затем могут возникнуть снова. Наблюдения показали также
существование ячеек, в которых движение происходит в горизонтальном
направлении от центра ячейки к её границам. Скорости таких движений около
500 м/сек. Размеры ячеек - супергранул составляют 30 - 40 тысяч
километров. По положению супергранулы совпадают с ячейками хромосферной
сетки. На границах супергранул магнитное поле усилено. Предполагают, что
супергранулы отражают на глубине нескольких тысяч километров под
поверхностью конвективных ячеек такого же размера. Первоначально
предполагалось, что фотосфера даёт только непрерывное излучение, а линии
поглощения образуются в расположенном над ней обращающем слое. Позже было
установлено, что в фотосфере образуются и спектральные линии, и
непрерывный спектр. Однако для упрощения математических выкладок при
расчете спектральных линий понятие обращающего слоя иногда применяется.
Часто в фотосфере наблюдаются солнечные пятна и факелы.

Солнечные пятна

Солнечный пятна – это тёмные образования, состоящие, как правило, из
более тёмного дра (тени) и окружающей его полутени. Диаметры пятен
достигают двухсот тысяч километров. Иногда пятно бывает окружено светлой
каёмкой. Совсем аленькие пятна называют порами. Время жизни пятен от
нескольких часов до нескольких месяцев. В спектре пятен ещё больше линий и
полос поглощения, чем в спектре фотосферы, он напоминает спектр звезды
спектрального класса КО. Смещения линий в спектре пятен из-за эффекта
Доплера указывает на движение вещества в пятнах - вытекание на более
низких уровнях и втекание на более высоких, скорости движения достигают 3
тысячи м/сек. Из сравнений интенсивности линий и непрерывного спектра
пятен и фотосферы следует, что пятна холоднее фотосферы на 1-2 тысячи
градусов (4500 К и ниже). Вследствие этого на фоне фотосферы пятна кажутся
тёмными, яркость ядра составляет 0,2 - 0,5 яркости фотосферы, яркость
полутени около 80% фотосферной. Все солнечные пятна обладают сильным
магнитным полем, достигающим для крупных пятен напряжённости 5 тысяч
эстердов. Обычно пятна образуют группы, которые по своему магнитному полю
могут быть униполярными, биполярными и мультиполярными, то есть
содержащими много пятен различной полярности, часто объединённых общей
полутенью. Группы пятен всегда окружены факелами и флоккулами,
протуберанцами, вблизи них иногда происходят солнечные вспышки, и в
солнечной короне над ними наблюдаются образования в виде лучей шлемов,
опахал - всё это вместе образует активную область на Солнце. Среднегодовое
число наблюдаемых пятен и активных областей, а также средняя площадь,
занимаемая ими, меняется с периодом около 11 лет. Это - средняя величина,
продолжительность же отдельных циклов солнечной активности колеблется от
7,5 до 16 лет. Наибольшее число пятен, одновременно видимых на
поверхности Солнца, меняется для различных циклов более чем в два раза. В
основном пятна встречаются в так называемых королевских зонах,
простирающихся от 5 до 30° гелиографической широты по обе сторона
солнечного экватора. В начале цикла солнечной активности широта места
расположения пятен выше, а в конце цикла - ниже, а на более высоких
широтах появляются пятна нового цикла. Чаще наблюдаются биполярные группы
пятен, состоящие из двух крупных пятен - головного и последующего, имеющих
противоположную магнитную полярность, и несколько более мелких. Головные
пятна имеют одну и ту же полярность в течение всего цикла солнечной
активности, эти полярности противоположны в северной и южной полусферах
Солнца. По-видимому, пятна представляют собой углубления в фотосфере, а
плотность вещества в них меньше плотности вещества в фотосфере на том же
уровне.

Факелы

В активных областях Солнца наблюдаются факелы - яркие фотосферные
образования, видимые в белом свете преимущественно вблизи края диска
Солнца. Обычно факелы появляются раньше пятен и существуют некоторое
время после их исчезновения. Площадь факельных площадок в несколько раз
превышает площадь соответствующей группы пятен. Количество факелов на
диске Солнца зависит от фазы цикла солнечной активности. Максимальный
контраст (18%) факелы имеют вблизи края диска Солнца, но не на самом
краю. В центре диска Солнца факелы практически не видны, контраст их
очень мал. Факелы имеют сложную волокнистую структуру, контраст их
зависит от длины волны, на которой проводятся наблюдения. Температура
факелов на несколько сот градусов превышает температуру фотосферы, общее
излучение с одного квадратного сантиметра превышает фотосферное на 3 - 5%.
По-видимому, факелы несколько возвышаются над фотосферой. Средняя
продолжительность их существования - 15 суток, но может достигать почти
трёх месяцев.

ХРОМОСФЕРА

Выше фотосферы расположен слой атмосферы Солнца, называемый
хромосферой. Без специальных телескопов хромосфера видна только во время
полных солнечных затмений как розовое кольцо, окружающее тёмный диск в те
минуты, когда Луна полностью закрывает фотосферу. Тогда можно наблюдать и
спектр хромосферы. На краю диска Солнца хромосфера представляется
наблюдателю как неровная полоска, из которой выступают отдельные зубчики -
хромосферные спикулы. Диаметр спикул 200-2000 километров, высота порядка
10000 километров, скорость подъёма плазмы в спикулах до 30 км/сек.
Одновременно на Солнце существует до 250 тысяч спикул. При наблюдении в
монохроматическом свете на диске Солнца видна яркая хромосферная сетка,
состоящая из отдельных узелков - мелких диаметром до 1000 км и крупных
диаметром от 2000 до 8000 км. Крупные узелки представляют собой скопления
мелких. Размеры ячеек сетки 30 - 40 тысяч километров. Полагают, что
спикулы образуются на границах ячеек хромосферной сетки. Плотность в
хромосфере падает с увеличением расстояния от центра Солнца. Число
атомов в одном куб. сантиметре изменяется от 10515 0вблизи фотосферы до
1059 в верхней части хромосферы. Исследование спектров хромосферы привело к
выводу, что в слое, где происходит переход от фотосферы к хромосфере,
температура переходит через минимум и по мере увеличения высоты над
основанием хромосферы становится равной 8 -10 тысяч Кельвинов, а на высоте
в несколько тысяч километров достигает 15 - 20 тысяч Кельвинов.
Установлено, что в хромосфере имеет место хаотическое движение газовых
масс со скоростями до 15•1053 м/сек. В хромосфере факелы в активных
областях видны как светлые образования, называемые обычно флоккулами. В
красной линии спектра водорода хорошо видны тёмные образования, называемые
волокнами. На краю диска Солнца волокна выступают за диск и наблюдаются на
фоне неба как яркие протуберанцы. Наиболее часто волокна и протуберанцы
встречаются в четырёх расположенных симметрично относительно солнечного
экватора зонах: полярных зонах севернее +40° и южнее -40° гелиографической
широты и низкоширотных зонах около ?(30°) в начале цикла солнечной
активности и ?(17°) в конце цикла. Волокна и протуберанцы низкоширотных зон
показывают хорошо выраженный 11-летний цикл, их максимум совпадает с
максимумом пятен. У высокоширотных протуберанцев зависимость от фаз цикла
солнечной активности выражена меньше, максимум наступает через два года
после максимума пятен. Волокна, являющиеся спокойными протуберанцами,
могут достигать длины солнечного радиуса и существовать в течении
нескольких оборотов Солнца. Средняя высота протуберанцев над поверхностью
Солнца составляет 30 - 50 тысяч километров, средняя длина - 200 тысяч
километров, ширина – 5 тысяч километров. Согласно исследованиям А. Б.
Северного, все протуберанцы по характеру движения можно разбить на 3
группы: электромагнитные, в которых движения происходят по упорядоченным
искривлённым траекториям - силовым линиям магнитного поля; хаотические, в
которых преобладают неупорядоченные турбулентные движения (скорости
порядка 10 км/сек); эруптивные, в которых вещество первоначального
спокойного протуберанца с хаотическими движениями внезапно выбрасывается с
возрастающей скоростью (достигающей 700 км/сек) прочь от Солнца.
Температура в протуберанцах (волокнах) 5 - 10 тысяч Кельвинов,
плотность близка к средней плотности хромосферы. Волокна, представляющие
собой активные, быстро меняющиеся протуберанцы, обычно сильно изменяются за
несколько часов или даже минут. Форма и характер движений в протуберанцах
тесно связаны с магнитным полем в хромосфере и солнечной короне.



солнечная корона


Солнечная корона – самая внешняя и наиболее разрежённая часть солнечной
атмосферы, простирающаяся на несколько (более 10) солнечных радиусов. До
1931 года корону можно было наблюдать только во время полных солнечных
затмений в виде серебристо-жемчужного сияния вокруг закрытого Луной диска
Солнца. В короне хорошо выделяются детали её структуры: шлемы, опахала,
корональные лучи и полярные щёточки. После изобретения коронографа
солнечную корону стали наблюдать и вне затмений. Общая форма короны
меняется с фазой цикла солнечной активности: в годы минимума корона сильно
вытянута вдоль экватора, в годы максимума она почти сферична. В белом
свете поверхностная яркость солнечной короны в миллион раз меньше яркости
центра диска Солнца. Ее свечение образуется в основном в результате
рассеяния фотосферного излучения свободными электронами. Практически
все атомы в короне ионизированы. Концентрация ионов и свободных
электронов у основания короны составляет 1059 частиц в 1 см. Нагрев короны
осуществляется аналогично нагреву хромосферы. Наибольшее выделение энергии
происходит в нижней части короны, но благодаря высокой теплопроводности
корона почти изотермична - температура понижается наружу очень медленно.
Отток энергии в короне происходит несколькими путями.
В нижней части короны основную роль играет перенос энергии вниз
благодаря теплопроводности. К потере энергии приводит уход из короны
наиболее быстрых частиц. Во внешних частях короны большую часть энергии
уносит солнечный ветер – поток коронального газа, скорость которого
растёт с удалением от Солнца от нескольких км/сек у его поверхности до 450
км/сек на расстоянии Земли. Температура в короне превышает 1056 К. В
активных слоях короны температура выше - до 1057 К. Над активными областями
могут образовываться так называемые корональные конденсации, в которых
концентрация частиц возрастает в десятки раз. Часть излучения внутри короны
- это линии излучения многократно ионизированных атомов железа, кальция,
магния, углерода, кислорода, серы и других химических элементов. Они
наблюдаются и в видимой части спектра и в ультрафиолетовой области. В
солнечной короне генерируется радиоизлучение Солнца в метровом диапазоне и
рентгеновское излучение, усиливающееся во много раз в активных
областях. Как показали рассчёты, солнечная корона не находится в
равновесии с межпланетной средой. Из короны в межпланетное пространство
распространяются потоки частиц, образующие солнечный ветер. Между
хромосферой и короной имеется сравнительно тонкий переходной слой, в
котором происходит резкий рост температуры до значений, характерных для
короны. Условия в нём определяются потоком энергии из короны в результате
теплопроводности. Переходный слой является источником большей части
ультрафиалетового излучения Солнца. Хромосфера, переходной слой и корона
дают всё наблюдаемое радиоизлучение Солнца. В активных областях
структура хромосферы, короны и переходного слоя меняется. Это изменение,
однако, ещё недостаточно изучено.
В активных областях хромосферы наблюдаются внезапные и сравнительно
кратковременные увеличения яркости, видимые сразу во многих спектральных
линиях. Эти яркие образования существуют от нескольких минут до нескольких
часов. Они называются солнечными вспышками (прежнее название - хромосферные
вспышки). Вспышки лучше всего видны в свете водородной линии, но наиболее
яркие видны иногда и в белом свете. В спектре солнечной вспышки
насчитывается несколько сотен эмиссионных линий различных элементов,
нейтральных и ионизированных. Температура тех слоёв солнечной атмосферы,
которые дают свечение в хромосферных линиях (1-2)х1054 К, в более
высоких слоях - до 1057 К. Плотность частиц во вспышке достигает 10513 -
10514 в одном кубическом сантиметре. Площадь солнечных вспышек может
достигать 10515 м. Обычно солнечные вспышки происходят вблизи быстро
развивающихся групп солнечных пятен с магнитным полем сложной конфигурации.
Они сопровождаются активизацией волокон и флоккулов, а также выбросами
вещества. При вспышке выделяется большое количество энергии (до 10521 -
10525 джоулей). Предполагается, что энергия солнечной вспышки первоначально
запасается в магнитном поле, а затем быстро высвобождается, что приводит к
локальному нагреву и ускорению протонов и электронов, вызывающих дальнейший
разогрев газа, его свечение в различных участках спектра электромагнитного
излучения, образование ударной волны. Солнечные вспышки дают значительное
увеличение ультрафиалетового излучения Солнца, сопровождаются всплесками
рентгеновского излучения (иногда весьма мощными), всплесками
радиоизлучения, выбросом карпускул высоких энергий вплоть до 10510 эв.
Иногда наблюдаются всплески рентгеновского излучения и без усиления
свечения в хромосфере. Некоторые вспышки (они называются протонными)
сопровождаются особенно сильными потоками энергичных частиц - космическими
лучами солнечного происхождения. Протонные вспышки создают опасность
для находящихся в полёте космонавтов, так как энергичные частицы,
сталкиваясь с атомами оболочки корабля порождают рентгеновское и гамма-
излучение, причём иногда в опасных дозах.
Уровень солнечной активности (число активных областей и солнечных
пятен, количество и мощность солнечных вспышек и т.д.) изменяется с
периодом около 11 лет. Существуют также слабые колебания величины
максимумов 11-летнего цикла с периодом около 90 лет. На Земле 11-летний
цикл прослеживается на целом ряде явлений органической и неорганической
природы (возмущения магнитного поля, полярные сияния, возмущения ионосферы,
изменение скорости роста деревьев с периодом около 11 лет, установленным по
чередованиям толщины годовых колец, и т.д.). На земные процессы оказывают
также воздействие отдельные активные области на Солнце и происходящие в них
кратковременные, но иногда очень мощные вспышки. Время существования
отдельной магнитной области на Солнце может достигать одного года.
Вызываемые этой областью возмущения в магнитосфере и верхней атмосфере
Земли повторяются через 27 суток (с наблюдаемым с Земли периодом вращения
Солнца). Наиболее мощные проявления солнечной активности - солнечные
(хромосферные) вспышки происходят нерегулярно (чаще вблизи периодов
максимальной активности), длительность их составляет 5-40 минут, редко
несколько часов. Энергия хромосферной вспышки может достигать 10525
джоулей, из выделяющейся при вспышке энергии лишь 1-10% приходится на
электромагнитное излучение в оптическом диапазоне. По сравнению с полным
излучением Солнца в оптическом диапазоне энергия вспышки не велика, но
коротковолновое излучение вспышки и генерируемые при вспышек электроны, а
иногда солнечные космические лучи могут дать заметный вклад в
рентгеновское и карпускулярное излучение Солнца. В периоды повышения
солнечной активности его рентгеновское излучение увеличивается в диапазоне
30 -10 нм в два раза, в диапазоне 10 -1 нм в 3-5 раз, в диапазоне 1-0,2 нм
более чем в сто раз. По мере уменьшения длины волны излучения вклад
активных областей в полное излучение Солнца увеличивается, и в последнем
из указанных диапазонов практически всё излучение обусловлено активными
областями. Жёсткое рентгеновское излучение с длиной волны меньше 0,2 нм
появляется в спектре Солнца всего лишь на короткое время после вспышек.
В ультрафиолетовом диапазоне (длина волны 180-350 нм) излучение
Солнца за 11-летний цикл меняется всего на 1-10%, а в диапазоне 290-2400 нм
остаётся практически постоянным и составляет 3,6•10526 ватт.
Постоянство энергии, получаемой Землёй от Солнца, обеспечивает
стационарность теплового баланса Земли. Солнечная активность существенно не
сказывается не энергетике Земли как планеты, но отдельные компоненты
излучения хромосферных вспышек могут оказывать значительное влияние на
многие физические, биофизические и биохимические процессы на Земле.
Активные области являются мощным источником корпускулярного излучения.
Частицы с энергиями около 1 кэв (в основном протоны), распространяющиеся
вдоль силовых линий межпланетного магнитного поля из активных областей
усиливают солнечный ветер. Эти усиления (порывы) солнечного ветра
повторяются через 27 дней и называются рекуррентными. Аналогичные потоки,
но ещё большей энергии и плотности, возникают при вспышках. Они вызывают
так называемые спорадические возмущения солнечного ветра и достигают Земли
за интервалы времени от 8 часов до двух суток. Протоны высокой энергии (от
100 Мэв до 1 Гэв) от очень сильных "протонных" вспышек и электроны с
энергией 10-500 кэв, входящие в состав солнечных космических лучей,
приходят к Земле через десятки минут после вспышек; несколько позже
приходят те из них, которые попали в "ловушки" межпланетного магнитного
поля и двигались вместе с солнечным ветром. Коротковолновое излучение и
солнечные космические лучи (в высоких широтах) ионизируют земную атмосферу,
что приводит к колебаниям её прозрачности в ультрафиолетовом и
инфракрасном диапазонах, а также к изменениям условий распространения
коротких радиоволн (в ряде случаев наблюдаются нарушения коротковолновой
радиосвязи).
Усиление солнечного ветра, вызванное вспышкой, приводит к сжатию
магнитосферы Земли с солнечной стороны, усилению токов на её внешней
границе, частичному проникновению частиц солнечного ветра в глубь
магнитосферы, пополнению частицами высоких энергий радиационных поясов
Земли и т.д. Эти процессы сопровождаются колебаниями напряжённости
геомагнитного поля (магнитной бурей), полярными сияниями и другими
геофизическими явлениями, отражающими общее возмущение магнитного поля
Земли. Воздействие активных процессов на Солнце (солнечных бурь) на
геофизические явления осуществляется как коротковолновой радиацией, так и
через посредство магнитного поля Земли. По-видимому, эти факторы являются
главными и для физико-химических и биологических процессов. Проследить
всю цепь связей, приводящих к 11-летней периодичности многих процессов
на Земле пока не удаётся, но накопленный обширный фактический материал не
оставляет сомнений в существовании таких связей. Так, была установлена
корреляция между 11-летним циклом солнечной активности и землетрясениями,
урожаями сельхозкультур, числом сердечно-сосудистых заболеваний и т.д.
Эти данные указывают на постоянное действие солнечно-земных связей.
Наблюдения Солнца ведутся с помощью рефракторов небольшого или
среднего размера и больших зеркальных телескопов, у которых большая
часть оптики неподвижна, а солнечные лучи направляются внутрь
горизонтальной или башенной установки телескопа при помощи одного или двух
движущихся зеркал. Создан специальный тип солнечного телескопа -
внезатменный коронограф. Внутри коронографа осуществляется затемнение
Солнца специальным непрозрачным экраном. В коронографе во много раз
уменьшается количество рассеянного света, поэтому можно наблюдать вне
затмения самые внешние слои атмосферы Солнца. Солнечные телескопы часто
снабжаются узкополосными светофильтрами, позволяющими вести наблюдения в
свете одной спектральной линии. Созданы также нейтральные светофильтры с
переменной прозрачностью по радиусу, позволяющие наблюдать солнечную
корону на расстоянии нескольких радиусов Солнца. Обычно крупные солнечные
телескопы снабжаются мощными спектрографами с фотографической или
фотоэлектрической фиксацией спектров. Спектрограф может иметь также
магнитограф - прибор для исследования зеемановского расщепления и
поляризации спектральных линий и определения величины и направления
магнитного поля на Солнце. Необходимость устранить замывающее действие
земной атмосферы, а также исследования излучения Солнца в ультрафиолетовой,
инфракрасной и некоторых других областях спектра, которые поглощаются в
атмосфере Земли, привели к созданию орбитальных обсерваторий за пределами
атмосферы, позволяющих получать спектры Солнца и отдельных образований на
его поверхности вне земной атмосферы.



ПУТЬ СОЛНЦА СРЕДИ ЗВЕЗД



Суточный путь Солнца


Каждый день, поднимаясь из-за горизонта в восточной стороне неба, Солнце
проходит по небу и вновь скрывается на западе. Для жителей Северного
полушария это движение происходит слева направо, для южан – справа налево.
В полдень Солнце достигает наибольшей высоты, или, как говорят астрономы,
кульминирует. Полдень – это верхняя кульминация, а бывает еще и нижняя – в
полночь. В наших средних широтах нижняя кульминация Солнца не видна, так
как она происходит под горизонтом. А вот за Полярным кругом, где Солнце
летом иногда не заходит, можно наблюдать и верхнюю, и нижнюю кульминации.
На географическом полюсе суточный путь Солнца практически параллелен
горизонту. Появившись в день весеннего равноденствия, Солнце четверть года
поднимается все выше и выше, описывая круги над горизонтом. В день летнего
солнцестояния оно достигает максимальной высоты (23,5?). Следующие четверть
года, до осеннего равноденствия, Солнце спускается. Это полярный день.
Затем на полгода наступает полярная ночь.
В средних широтах на протяжении года видимый суточный путь Солнца то
сокращается, то увеличивается. Наименьшим он оказывается в день зимнего
солнцестояния, наибольшим – в день летнего солнцестояния. В дни
равноденствий Солнце находится на небесном экваторе. В это же время оно
восходит в точке востока и заходит в точке запада.
В период от весеннего равноденствия до летнего солнцестояния место
восхода Солнца немного смещается от точки восхода влево, к северу. А место
захода удаляется от точки запада вправо, хотя тоже к северу. В день летнего
солнцестояния Солнце появляется на северо-востоке, а в полдень оно
кульминирует на максимальной за год высоте. Заходит Солнце на северо-
западе.
Затем места восхода и захода смещаются обратно к югу. В день зимнего
солнцестояния Солнце восходит на юго-востоке, пересекает небесный меридиан
на минимальной высоте и заходит на юго-западе.
Следует учитывать, что вследствие рефракции (то есть преломления световых
лучей в земной атмосфере) видимая высота светила всегда больше истинной.
Поэтому восход Солнца происходит раньше, а заход – позже, чем это было бы
при отсутствии атмосферы.
Итак, суточный путь Солнца представляет собой малый круг небесной сферы,
параллельный небесному экватору. В то же время в течении года Солнце
перемещается относительно небесного экватора то к северу, то к югу. Дневная
и ночная части его пути неодинаковы. Они равны только в дни равноденствий,
когда Солнце находится на небесном экваторе.


Годичный путь Солнца


Выражение "путь Солнца среди звезд" кому-то покажется странным. Ведь днем
звезд не видно. Поэтому нелегко заметить, что Солнце медленно, примерно на
1? за сутки, перемещается среди звезд справа налево. Зато можно проследить,
как в течение года меняется вид звездного неба. Все это – следствие
обращения Земли вокруг Солнца.
Путь видимого годичного перемещения Солнца на фоне звезд именуется
эклиптикой (от греческого "эклипсис" – "затмение"), а период оборота по
эклиптике – звездным годом. Он равен 265 суткам 6 часам 9 минутам 10
секундам, или 365, 2564 средних солнечных суток.
Эклиптика и небесный экватор пересекаются под углом 23?26' в точках
весеннего и осеннего равноденствия. В первой из этих точек Солнце обычно
бывает 21 марта, когда оно переходит из южного полушария неба в северное.
Во второй – 23 сентября, при переходе их северного полушария в южное. В
наиболее удаленной к северу точке эклиптике Солнце бывает 22 июня (летнее
солнцестояние), а к югу – 22 декабря (зимнее солнцестояние). В високосный
год эти даты сдвинуты на один день.
Из четырех точек эклиптики главной является точка весеннего
равноденствия. Именно от нее отсчитывается одна из небесных координат –
прямое восхождение. Она же служит для отсчета звездного времени и
тропического года – промежутка времени между двумя последовательными
прохождениями центра Солнца через точку весеннего равноденствия.
Тропический год определяет смену времен года на нашей планете.
Так как точка весеннего равноденствия медленно перемещается среди звезд
вследствие прецессии земной оси, продолжительность тропического года меньше
продолжительности звездного. Она составляет 365,2422 средних солнечных
суток.
Около 2 тысяч лет назад, когда Гиппарх составил свой звездный каталог
(первый дошедший до нас целиком), точка весеннего равноденствия находилась
в созвездии Овна. К нашему времени она переместилась почти на 30?, в
созвездие Рыб, а точка осеннего равноденствия – из созвездия Весов в
созвездие Девы. Но по традиции точки равноденствий обозначаются прежними
знаками прежних "равноденственных" созвездий – Овна и Весов. То же
случилось и с точками солнцестояния: летнее в созвездии Тельца отмечается
знаком Рака, а зимнее в созвездие Стрельца – знаком Козерога.
И наконец, последнее, что связано с видимым годичным движением Солнца.
Половину эклиптики от весеннего равноденствия до осеннего (с 21 марта по 23
сентября) Солнце проходит за 186 суток. Вторую половину, от осеннего
равноденствия да весеннего, – за 179 суток (180 в високосный год). Но ведь
половинки эклиптики равны: каждая по 180?. Следовательно, Солнце движется
по эклиптике неравномерно. Эта неравномерность объясняется изменением
скорости движения Земли по эллиптической орбите вокруг Солнца.
Неравномерность движения Солнца по эклиптике приводит к разной
длительности времен года. Для жителей северного полушария, например, весна
и лето на шесть суток продолжительнее осени и зимы. Земля 2-4 июня
расположена от Солнца на 5 миллионов километров дольше, чем 2-3 января, и
движется по своей орбите медленнее в соответствии со вторым законом
Кеплера. Летом Земля получает от Солнца меньше тепла, но зато лето в
Северном полушарии продолжительнее зимы. Поэтому в Северном полушарии Земли
теплее, чем в Южном.


СОЛНЕЧНЫЕ ЗАТМЕНИЯ


В момент лунного новолуния может произойти солнечное затмение – ведь
именно в новолуние Луна проходит между Солнцем и Землей. Астрономы заранее
знают, когда и где будет наблюдаться солнечное затмение, и сообщают об этом
в астрономических календарях.
Земле достался один-единственный спутник, но зато какой! Луна в 400 раз
меньше Солнца и как раз в 400 раз ближе его к Земле, поэтому на небе Солнце
и Луна кажутся дисками одинаковых размеров. Так что при полном солнечном
затмении Луна целиком заслоняет яркую поверхность Солнца, оставляя при этом
открытой всю солнечную атмосферу.
Точно в назначенный час и минуту сквозь темное стекло видно, как на яркий
диск Солнца наползает с правого края что-то черное, как появляется на нем
черная лунка. Она постепенно разрастается, пока наконец солнечный круг не
примет вид узкого серпа. При этом быстро ослабевает дневной свет. Вот
Солнце полностью прячется за темной заслонкой, гаснет последний дневной
луч, и тьма, кажущаяся тем глубже, чем она внезапнее, расстилается вокруг,
повергая человека и всю природу в безмолвное удивление.
О затмении Солнца 8 июля 1842 года в городе Павии (Италия) рассказывает
английский астроном Фрэнсис Бейли: "Когда наступило полное затмение и
солнечный свет мгновенно потух, вокруг темного те

Новинки рефератов ::

Реферат: Методика использования электронного учебника на уроках физики (Педагогика)


Реферат: Культура Византии после Крестовых походов (История)


Реферат: В.П. Астафьев (Литература)


Реферат: Археология, как способ познания мира на примере городища Аркаим (История)


Реферат: Задачи, деятельность эксперта в системах моделирования (Компьютеры)


Реферат: Технология выращивания капусты (Сельское хозяйство)


Реферат: Резина (Технология)


Реферат: Искусство на Руси (Искусство и культура)


Реферат: Поверхностное натяжение (Физика)


Реферат: Образование Халифата (История)


Реферат: Страхование (Страхование)


Реферат: Жизнь и деятельность Витторио Карпаччо (Культурология)


Реферат: Бог и человек у Гераклита Эфесского (Религия)


Реферат: Расчет винтового гибочного пресса (Технология)


Реферат: Поступление основных средств (Бухгалтерский учет)


Реферат: Выборы: декларации и действительность (Некоторые проблемы избирательного права в современной России) (Право)


Реферат: Время Ивана Грозного (История)


Реферат: Особенности преодоления социально-экономических противоречий в Англии и Франции (Социология)


Реферат: Социология (Контрольная) (Социология)


Реферат: Динамические объекты (Турбо Паскаль) (Программирование)



Copyright © GeoRUS, Геологические сайты альтруист