GeoSELECT.ru



Технология / Реферат: Волоконно-оптические датчики (Технология)

Космонавтика
Уфология
Авиация
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Аудит
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника
Бухгалтерский учет
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Инвестиции
Иностранные языки
Информатика
Искусство и культура
Исторические личности
История
Кибернетика
Коммуникации и связь
Компьютеры
Косметология
Криминалистика
Криминология
Криптология
Кулинария
Культурология
Литература
Литература : зарубежная
Литература : русская
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Мифология
Москвоведение
Музыка
Муниципальное право
Налоги
Начертательная геометрия
Оккультизм
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование
Психология
Радиоэлектроника
Религия
Риторика
Сельское хозяйство
Социология
Спорт
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Физика
Физкультура
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
   

Реферат: Волоконно-оптические датчики (Технология)



Московский ордена Ленина, ордена Октябрьской Революции
и ордена Трудового Красного Знамени
ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
имени Н.Э.Баумана.
______________________________________________________

Факультет РЛ
Кафедра РЛ2



Реферат по дисциплине

"Лазерные оптико-электронные приборы"



студента
Майорова Павла

Леонидовича, группа РЛ3-101.



Руководитель
Немтинов Владимир Борисович
Тема реферата:

"Оптическая обработка информации"

Вступление

Сенсоризация производственной деятельности, т. е. замена органов
чувств человека на датчики, должна рассматриваться в качестве третьей
промышленной революции вслед за первыми двумя — машинно-энергетической и
информационно-компьютерной. Потребность в датчиках стремительно растет в
связи с бурным развитием автоматизированных систем контроля и управления,
внедрением новых технологических процессов, переходом к гибким
автоматизированным производствам. Помимо высоких метрологических
характеристик датчики должны обладать высокой надежностью, долговечностью,
стабильностью, малыми габаритами, массой и энергопотреблением,
совместимостью с микроэлектронными устройствами обработки информации при
низкой трудоемкости изготовления и небольшой стоимости. Этим требованиям в
максимальной степени удовлетворяют волоконно-оптические датчики.

Волоконно-оптические датчики

Первые попытки создания датчиков на основе оптических волокон можно
отнести к середине 1970-х годов. Публикации о более или менее приемлемых
разработках и экспериментальных образцах подобных датчиков появились во
второй половине 1970-х годов. Однако считается, что этот тип датчиков
сформировался как одно из направлений техники только в начале 1980-х годов.
Тогда же появился и термин "волоконно-оптические датчики" (optical fiber
sensors). Таким образом, волоконно-оптические датчики — очень молодая
область техники.

От электрических измерений к электронным

Конец X IX века можно считать периодом становления метрологии в ее
общем виде. К тому времени произошла определенная систематизация в области
электротехники на основе теории электромагнетизма и цепей переменного тока.
До этого физические величины измерялись главным образом механическими
средствами, а сами механические измерения распространены были
незначительно. Электрические же измерения ограничивались едва ли не
исключительно только электростатическими. Можно сказать, что метрология,
развиваясь по мере прогресса электротехники, с конца XIX века стала как бы
ее родной сестрой.
Рассмотрим этапы и успехи этого развития. В течение нескольких
десятков лет, вплоть до второй мировой войны, получили распространение
электроизмерительные приборы, принцип работы которых основан на силах
взаимодействия электрического тока и магнитного поля (закон Био — Совара).
Тогда же эти приборы внедрялись в быстро развивающуюся промышленность.
Особенность периода в том, что наука и техника, причастные к
электроизмерительным приборам, становятся ядром метрологии и измерительной
индустрии.
После второй мировой войны значительные успехи в развитии электроники
привели к громадным переменам в метрологии. В пятидесятых годах появились
осциллографы, содержащие от нескольких десятков до сотни и более
электронных ламп и обладающие весьма высокими функциональными
возможностями, а также целый ряд подобных устройств, которые стали широко
применяться в сфере производства и научных исследований. Так наступила эра
электронных измерений. Сегодня, по прошествии 30 лет, значительно
изменилась элементная база измерительных приборов. От электронных ламп
перешли к транзисторам, интегральным схемам (ИС), большим ИС (БИС). Таким
образом, и сегодня электроника является основой измерительной техники.

От аналоговых измерений к цифровым

Однако между электронными измерениями, которые производились в 1950-e
годы, и электронными измерениями 1980-х годов большая разница. Суть ее
заключается в том, что во многие измерительные приборы введена цифровая
техника.
Обычно электронный измерительный прибор имеет структуру, подобную
изображенной на рис. 1. Здесь датчик в случае измерения электрической
величины (электрический ток или напряжение) особой роли не играет, и
довольно часто выходным устройством такого измерителя является индикатор.
Однако при использовании подобного прибора в какой-либо измерительной
системе сплошь и рядом приходится сталкиваться с необходимостью обработки
сигнала различными электронными схемами. Внедрение цифровой измерительной
техники подразумевает в идеале, что цифровой сигнал поступает
непосредственно от чувствительного элемента датчика. Но пока это скорее
редкость, чем правило. Чаще же всего этот сигнал имеет аналоговую форму, и
для него на входе блока обработки данных установлен аналого-цифровой
преобразователь (АЦП). Цифровая же техника используется главным образом в
блоке обработки данных и в выходном устройстве (индикаторе) или в одном из
них.
[pic]
Рис. 1. Типовая структура электронного измерителя
Основное преимущество использования цифровой техники в процессе
обработки данных — это сравнительно простая реализация операций высокого
уровня, которые трудно осуществимы с помощью аналоговых устройств. К таким
операциям относятся подавление шумов, усреднение, нелинейная обработка,
интегральные преобразования и др. При этом функциональная нагрузка на
чувствительный элемент датчика уменьшается и снижаются требования к
характеристикам элемента. Кроме того, благодаря цифровой обработке
становится возможным измерение весьма малых величин.

Цифризация и волоконно-оптические датчики

Важно отметить, что одним из этапов развития волоконно-оптических
датчиков было функциональное расширение операций, выполняемых в блоке
обработки данных датчика, путем их цифризации и, что особенно существенно,
упрощение операций нелинейного типа. Ведь в волоконно-оптических датчиках
линейность выходного сигнала относительно измеряемой физической величины
довольно часто неудовлетворительна. Благодаря же цифризации обработки эта
проблема теперь частично или полностью решается.
Нечего и говорить, что важный стимул появления волоконно-оптических
датчиков — создание самих оптических волокон, о которых будет рассказано
ниже, а также взрывообразное развитие оптической электроники и волоконно-
оптической техники связи.

Становление оптоэлектроники и появление оптических волокон


Лазеры и становление оптоэлектроники

[pic]
Рис. 2. Снижение минимальных потерь передачи для различных типов оптических
волокон
Оптоэлектроника — это новая область науки и техники, которая появилась
на стыке оптики и электроники. Следует заметить, что в развитии
радиотехники с самого начала ХХ века постоянно прослеживалась тенденция
освоения электромагнитных волн все более высокой частоты. Вытекающее из
этого факта предположение, что однажды радиотехника и электроника достигнут
оптического диапазона волн, становится все более и более достоверным,
начиная с 1950-х годов. Годом возникновения оптоэлектроники можно считать
1955-й, когда Е. Лоебнер (Loеbner Е. Е. Optoelectronic devices and
networks//Proc. 1ЕЕЕ. 1955. V. 43. N 12. Р. 1897 — 1906) описал
потенциальные параметры различных оптоэлектронных устройств связи, нынче
называемых оптронами, т. е. когда были обсуждены основные характеристики
соединения оптического и электронного устройств.
С тех пор оптоэлектроника непрерывно развивается, и полагают, что до
конца ХХ века она превратится в огромную отрасль науки и техники,
соизмеримую с электроникой. Появление в начале 1960-х годов лазеров
способствовало ускорению развития оптоэлектроники. Потенциальные
характеристики лазеров описаны еще в 1958 г., а уже в 1960 г. был создан
самый первый лазер — газовый, на основе смеси гелия и неона. Генерирующие
непрерывное излучение при комнатной температуре полупроводниковые лазеры,
которые в настоящее время получили наиболее широкое применение, стали
выпускаться с 1970 г.

Появление оптических волокон

Важным моментом в развитии оптоэлектроники является создание
оптических волокон. Особенно интенсивными исследования стали в конце 1960-x
годов, а разработка в 1970 г. американской фирмой "Корнинг" кварцевого
волокна с малым затуханием (20 дБ/км) явилась эпохальным событием и
послужила стимулом для увеличения темпов исследований и разработок на все
1970-е годы.
На рис. 2 показано снижение минимальных потерь передачи для различных
оптических волокон на протяжении минувших десяти с лишним лет. Можно
заметить, что для кварцевых оптических волокон потери за 10 лет (в 1970-е
годы) уменьшились примерно на два порядка.
Изначальной и главной целью разработки оптических волокон было
обеспечение ими оптических систем связи. Тем не менее в 1970-е годы, когда
в технике оптических волокон применительно к оптическим системам связи были
достигнуты уже значительные успехи, влияние волокон на развитие волоконно-
оптических датчиков, о которых пойдет речь в этой книге, оказалось
несколько неожиданным.

Одно- и многомодовые оптические волокна.

[pic]
Рис. 3. Одномодовое (а) и многомодовое (б) оптическое волокно
Оптическое волокно обычно бывает одного из двух типов: одномодовое, в
котором распространяется только одна мода (тип распределения передаваемого
электромагнитного поля), и многомодовое — с передачей множества (около
сотни) мод. Конструктивно эти типы волокон различаются только диаметром
сердечника — световедущей части, внутри которой коэффициент преломления
чуть выше, чем в периферийной части — оболочке (рис. 3).
В технике используются как многомодовые, так и одномодовые оптические
волокна. Многомодовые волокна имеют большой (примерно 50 мкм) диаметр
сердечника, что облегчает их соединение друг с другом. Но поскольку
групповая скорость света для каждой моды различна, то при передаче узкого
светового импульса происходит его расширение (увеличение дисперсии). По
сравнению с многомодовыми у одномодовых волокон преимущества и недостатки
меняются местами: дисперсия уменьшается, но малый (5...10 мкм) диаметр
сердечника значительно затрудняет соединение волокон этого типа и введение
в них светового луча лазера.
Вследствие этого одномодовые оптические волокна нашли преимущественное
применение в линиях связи, требующих высокой скорости передачи информации
(линии верхнего ранга в иерархической структуре линий связи), а
многомодовые чаще всего используются в линиях связи со сравнительно
невысокой скоростью передачи информации. Имеются так называемые когерентные
волоконно-оптические линии связи, где пригодны только одномодовые волокна.
В многомодовом оптическом волокне когерентность принимаемых световых волн
падает, поэтому его использование в когерентных линиях связи непрактично,
что и предопределило применение в подобных линиях только одномодовых
оптических волокон.
Напротив, хотя при использовании оптических волокон для датчиков
вышеуказанные факторы тоже имеют место, но во многих случаях их роль уже
иная. В частности, при использовании оптических волокон для когерентных
измерений, когда из этих волокон формируется интерферометр, важным
преимуществом одномодовых волокон является возможность передачи информации
о фазе оптической волны, что неосуществимо с помощью многомодовых волокон.
Следовательно, в данном случае необходимо только одномодовое оптическое
волокно, как и в когерентных линиях связи. Тем не менее, на практике
применение одномодового оптического волокна при измерении нетипично из-за
небольшой его дисперсии. Короче говоря, в сенсорной оптоэлектронике, за
исключением датчиков-интерферометров, используются многомодовые оптические
волокна. Это обстоятельство объясняется еще и тем, что в датчиках длина
используемых оптических волокон значительно меньше, чем в системах
оптической связи.

Характеристики оптического волокна как структурного элемента датчика и
систем связи

Прежде чем оценивать значимость этих характеристик для обеих областей
применения, отметим общие достоинства оптических волокон:
. широкополосность (предполагается до нескольких десятков терагерц);
. малые потери (минимальные 0,154 дБ/км);
. малый (около 125 мкм) диаметр;
. малая (приблизительно 30 г/км) масса;
. эластичность (минимальный радиус изгиба 2 MM);
. механическая прочность (выдерживает нагрузку на разрыв примерно 7
кг);
. отсутствие взаимной интерференции (перекрестных помех типа известных
в телефонии "переходных разговоров");
. безындукционность (практически отсутствует влияние электромагнитной
индукции, а следовательно, и отрицательные явления, связанные с
грозовыми разрядами, близостью к линии электропередачи, импульсами
тока в силовой сети);
. взрывобезопасность (гарантируется абсолютной неспособностью волокна
быть причиной искры);
. высокая электроизоляционная прочность (например, волокно длиной 20
см выдерживает напряжение до 10000 B);
. высокая коррозионная стойкость, особенно к химическим растворителям,
маслам, воде.
В области оптической связи наиболее важны такие достоинства волокна,
как широкополосность и малые потери, причем в строительстве внутригородских
сетей связи наряду с этими свойствами особое значение приобретают малый
диаметр и отсутствие взаимной интерференции, а в электрически
неблагоприятной окружающей среде — безындукционность. Последние же три
свойства в большинстве случаев здесь не играют какой-либо заметной роли.
В практике использования волоконно-оптических датчиков имеют
наибольшее значение последние четыре свойства. Достаточно полезны и такие
свойства, как эластичность, малые диаметр и масса. Широкополосность же и
малые потери значительно повышают возможности оптических волокон, но далеко
не всегда эти преимущества осознаются разработчиками датчиков. Однако, с
современной точки зрения, по мере расширения функциональных возможностей
волоконно-оптических датчиков в ближайшем будущем эта ситуация понемногу
исправится.
Как будет показано ниже, в волоконно-оптических датчиках оптическое
волокно может быть применено просто в качестве линии передачи, а может
играть роль самого чувствительного элемента датчика. В последнем случае
используются чувствительность волокна к электрическому полю (эффект Керра),
магнитному полю (эффект Фарадея), к вибрации, температуре, давлению,
деформациям (например, к изгибу). Многие из этих эффектов в оптических
системах связи оцениваются как недостатки, в датчиках же их появление
считается скорее преимуществом, которое следует развивать.
Следует также отметить, что оптические волокна существенно улучшают
характеристики устройств, основанных на эффекте Саньяка.

Классификация волоконно-оптических датчиков и примеры их применения

Современные волоконно-оптические датчики позволяют измерять почти все.
Например, давление, температуру, расстояние, положение в пространстве,
скорость вращения, скорость линейного перемещения, ускорение, колебания,
массу, звуковые волны, уровень жидкости, деформацию, коэффициент
преломления, электрическое поле, электрический ток, магнитное поле,
концентрацию газа, дозу радиационного излучения и т.д.
Если классифицировать волоконно-оптические датчики с точки зрения
применения в них оптического волокна, то, как уже было отмечено выше, их
можно грубо разделить на датчики, в которых оптическое волокно используется
в качестве линии передачи, и датчики, в которых оно используется в качестве
чувствительного элемента. Как видно из таблицы 1, в датчиках типа "линии
передачи" используются в основном многомодовые оптические волокна, а в
датчиках сенсорного типа чаще всего — одномодовые.

Таблица 1. Характеристики волоконно-оптических датчиков
|Структура |Измеряемая |Используемое |Детектируемая |Оптическое |Параметры и |
| |физическая |физическое |величина |волокно |особенности |
| |величина |явление, свойство| | |измерений |
|Датчики с оптическим волокном в качестве линии передачи |
|Проходящего типа |Электрическое |Эффект Поккельса |Составляющая |Многомодовое |1... 1000B; |
| |напряжение, | |поляризация | |0,1...1000 В/см |
| |напряженность | | | | |
| |электрического | | | | |
| |поля | | | | |
|Проходящего типа |Сила |Эффект Фарадея |Угол поляризации |Многомодовое |Точность (1% при |
| |электрического | | | |20...85( С |
| |тока, | | | | |
| |напряженность | | | | |
| |магнитного поля | | | | |
|Проходящего типа |Температура |Изменение |Интенсивность |Многомодовое |-10...+300( С |
| | |поглощения |пропускаемого | |(точность (1( С) |
| | |полупроводников |света | | |
|Проходящего типа |Температура |Изменение |Интенсивность |Многомодовое |0...70( С |
| | |постоянной |пропускаемого | |(точность (0,04( |
| | |люминесценции |света | |С) |
|Проходящего типа |Температура |Прерывание |Интенсивность |Многомодовое |Режим "вкл/выкл" |
| | |оптического пути |пропускаемого | | |
| | | |света | | |
|Проходящего типа |Гидроакустическое|Полное отражение |Интенсивность |Многомодовое |Чувствительность |
| |давление | |пропускаемого | |... 10 мПа |
| | | |света | | |
|Проходящего типа |Ускорение |Фотоупругость |Интенсивность |Многомодовое |Чувствительность |
| | | |пропускаемого | |около 1 мg |
| | | |света | | |
|Проходящего типа |Концентрация газа|Поглощение |Интенсивность |Многомодовое |Дистанционное |
| | | |пропускаемого | |наблюдение на |
| | | |света | |расстоянии до 20 |
| | | | | |км |
|Отражательного |Звуковое давление|Многокомпонентная|Интенсивность |Многомодовое |Чувствительность,|
|типа |в атмосфере |интерференция |отраженного света| |характерная для |
| | | | | |конденсаторного |
| | | | | |микрофона |
|Отражательного |Концентрация |Изменение |Интенсивность |Пучковое |Доступ через |
|типа |кислорода в крови|спектральной |отраженного света| |катетер |
| | |характеристики | | | |
|Отражательного |Интенсивность |Изменение |Интенсивность |Пучковое |Неразрушающий |
|типа |СВЧ-излучения |коэффициента |отраженного света| |контроль |
| | |отражения жидкого| | | |
| | |кристалла | | | |
|Антенного типа |Параметры |Излучение |Интенсивность |Многомодовое |Длительность |
| |высоковольтных |световода |пропускаемого | |фронта до 10 нс |
| |импульсов | |света | | |
|Антенного типа |Температура |Инфракрасное |Интенсивность |Инфракрасное |250...1200( С |
| | |излучение |пропускаемого | |(точность (1%) |
| | | |света | | |
|Датчики с оптическим волокном в качестве чувствительного элемента |
|Кольцевой |Скорость вращения|Эффект Саньяка |Фаза световой |Одномодовое |>0,02 (/ч |
|интерферометр | | |волны | | |
|Кольцевой |Сила |Эффект Фарадея |Фаза световой |Одномодовое |Волокно с |
|интерферометр |электрического | |волны | |сохранением |
| |тока | | | |поляризации |
|Интерферометр |Гидроакустическое|Фотоупругость |Фаза световой |Одномодовое |1...100 рад(атм/м|
|Маха-Цендера |давление | |волны | | |
|Интерферометр |Сила |Магнитострикция |Фаза световой |Одномодовое |Чувствительность |
|Маха-Цендера |электрического | |волны | |10-9 А/м |
| |тока, | | | | |
| |напряженность | | | | |
| |магнитного поля | | | | |
|Интерферометр |Сила |Эффект Джоуля |Фаза световой |Одномодовое |Чувствительность |
|Маха-Цендера |электрического | |волны | |10 мкА |
| |тока | | | | |
|Интерферометр |Ускорение |Механическое |Фаза световой |Одномодовое |1000 рад/g |
|Маха-Цендера | |сжатие и |волны | | |
| | |растяжение | | | |
|Интерферометр |Гидроакустическое|Фотоупругость |Фаза световой |Одномодовое |— |
|Фабри-Перо |давление | |волны | | |
| | | |(полиинтерференци| | |
| | | |я) | | |
|Интерферометр |Температура |Тепловое сжатие и|Фаза световой |Одномодовое |Высокая |
|Фабри-Перо | |расширение |волны | |чувствительность |
| | | |(полиинтерференци| | |
| | | |я) | | |
|Интерферометр |Спектр излучения |Волновая |Интенсивность |Одномодовое |Высокая |
|Фабри-Перо | |фильтрация |пропускаемого | |разрешающая |
| | | |света | |способность |
|Интерферометр |Пульс, скорость |Эффект Доплера |Частота биений |Одномодовое, |10-4...108 м/с |
|Майкельсона |потока крови | | |многомодовое | |
|Интерферометр на |Гидроакустическое|Фотоупругость |Фаза световой |С сохранением |Без опорного |
|основе мод с |давление | |волны |поляризации |оптического |
|ортогональной | | | | |волокна |
|поляризацией | | | | | |
|Интерферометр на |Напряженность |Магнитострикция |Фаза световой |С сохранением |Без опорного |
|основе мод с |магнитного поля | |волны |поляризации |оптического |
|ортогональной | | | | |волокна |
|поляризацией | | | | | |
|Неинтерферометрич|Гидроакустическое|Потери на |Интенсивность |Многомодовое |Чувствительность |
|еская |давление |микроизгибах |пропускаемого | |100 мПа |
| | |волокна |света | | |
|Неинтерферометрич|Сила |Эффект Фарадея |Угол поляризации |Одномодовое |Необходимо |
|еская |электрического | | | |учитывать |
| |тока, | | | |ортогональные |
| |напряженность | | | |моды |
| |магнитного поля | | | | |
|Неинтерферометрич|Скорость потока |Колебания волокна|Соотношение |Одномодовое, |>0,3 м/с |
|еская | | |интенсивности |многомодовое | |
| | | |между двумя | | |
| | | |модами | | |
|Неинтерферометрич|Доза |Формирование |Интенсивность |Многомодовое |0,01...1,00 Мрад |
|еская |радиоактивного |центра |пропускаемого | | |
| |излучения |окрашивания |света | | |
|Последовательного|Распределение |Обратное |Интенсивность |Многомодовое |Разрешающая |
|и параллельного |температуры и |рассеяние Релея |обратного | |способность 1 м |
|типа |деформации | |рассеяния Релея | | |

|[pic] |Рис. 5. | |[pic] |Рис. 7. |
| |Волоконно-опти| | |Волоконно-оптиче|
| |ческий датчик | | |ский датчик |
| |проходящего | | |антенного типа. |
| |типа. | | | |

|[pic] |Рис. 6. |
| |Волоконно-оптиче|
| |ский датчик |
| |отражательного |
| |типа. |

Краткая история исследований и разработок

В истории волоконно-оптических датчиков трудно зафиксировать какой-
либо начальный момент, в отличие от истории волоконно-оптических линий
связи. Первые публикации о проектах и экспериментах с измерительной
техникой, в которой использовалось бы оптическое волокно, начали появляться
с 1973 г., а во второй половине 1970-х годов их число значительно
увеличилось. В 1978 году Нэмото Тосио предложил общую классификацию
волоконно-оптических датчиков (рис. 4.), которая мало отличается от
современной. С наступлением 1980-х годов история развития волоконно-
оптических датчиков обрастает значительными подробностями.

Заключение

|[pic] |Рис.4. Классификация|
| |основных структур |
| |волоконно-оптических|
| |датчиков: |
| |а) с изменением |
| |характеристик |
| |волокна (в том числе|
| |специальных волокон)|
| | |
| |б) с изменением |
| |параметров |
| |передаваемого света |
| |в) с чувствительным |
| |элементом на торце |
| |волокна |


Основными элементами волоконно-оптического датчика, как можно заметить
из табл. 1, являются оптическое волокно, светоизлучающие (источник света) и
светоприемные устройства, оптический чувствительный элемент. Кроме того,
специальные линии необходимы для связи между этими элементами или для
формирования измерительной системы с датчиком. Далее, для практического
внедрения волоконно-оптических датчиков необходимы элементы системной
техники, которые в совокупности с вышеуказанными элементами и линией связи
образуют измерительную систему.

Список литературы

Окоси Т. и др. Волоконно-оптические датчики.

Оглавление

Вступление 2
Волоконно-оптические датчики 2
От электрических измерений к электронным 2
От аналоговых измерений к цифровым 3
Цифризация и волоконно-оптические датчики 4
Становление оптоэлектроники и появление оптических волокон 4
Лазеры и становление оптоэлектроники 4
Появление оптических волокон 6
Одно- и многомодовые оптические волокна. 6
Характеристики оптического волокна как структурного элемента датчика и
систем связи 7
Классификация волоконно-оптических датчиков и примеры их применения 9
Датчики с оптическим волокном в качестве линии передачи 10
Датчики с оптическим волокном в качестве чувствительного элемента 12
Краткая история исследований и разработок 15
Заключение 15
Список литературы 16
Оглавление 16





Реферат на тему: Вопросы на экзамен по ДМ (детали машин)

Основные понятия и определения:
1 изделия – любой предмет или набор предметов производства изготовляемого
предприятием.
2 деталь – изделия изготовленного по наименованию и марки материала без
применения сборочной операции.
3 сборочная единица – изделие составные части которого подлежат соединению
м/у собой сборочными операциями
4 узел – сборочная единица которая может выполнять определённую ф-цию в
изделиях одного назначения только совместно с другими частями.
5 агрегат – сборочная единица обладающая полной взаимозаменяемостью и
способна выполнять определённую функцию в изделии или самостоятельно
6 машина – мех устройство предназначена для выполнения полезной работы
По характеру машины делятся на три группы
1 машины – двигатели; преобразующие тот или иной вид энергии в механическую
работу (ДВС, турбина и т. д.)
2 машины – преобразователи (генераторы) преобразующие мех энергию в другой
вид энергии (компрессор, турбина).
3 машины орудия (рабочая машина) использующая мех энергию для выполнения
технологического процесса
Общая классификация д.м
Состоит из трёх размеров: 1) соединения 2) механические передачи 3)
детали и узлы передач
соединения классиф на разъёмные и неразъемные.
Разъёмные наз соединения допускающие разборку и последующую сборку без
нарушения работоспособности входящих в соединение деталей: резьбовые,
шлицевые.
Неразъёмные наз. соединения не допускающие разборку без повреждения детали
или их элементов: заклёпочные, соед с натягом.
Классификация мех-их передач
1 по принципу передачи движения
а) передачи зацепления: зубчатые, червячные, цепные.
б) передачи трением: фрикционные, ременные
2 по способу соединения деталей передач
а) передача с непосредственным контактом
б) передача с гибкой связью (цепные, ременные)
Основные критерии работоспособности и расчёта деталей машин. Общие
сведения.
Работоспособность – состояние объекта при котором способен выполнять
заданные функции сохраняя значения заданных параметров в пределах
установленной техническо-нормативных документаций.
Основные критерии работоспособности д.м. является:
Прочность, жёсткость, износостойкость, теплостойкость, виброустойчивость.
При конструирование д.м. расчёт ведут обычно по одному или двум критериям,
остальные критерии удовлетворяются заведомо или не имеют практического
значения рассматриваемой детали.
Прочность – критерии работоспособности и расчёта деталей машин.
Прочность – способность детали сопротивляться разрушению
Прочность оценивается нескольким способами:
а) по доп. напряжению
?

Новинки рефератов ::

Реферат: Архитектурные памятники Беларуси: Минск (Архитектура)


Реферат: Петр Первый (История)


Реферат: Общества с ограниченной ответственностью (Право)


Реферат: Анализ эксплуатационного обслуживания ВЦ средней производительности (Компьютеры)


Реферат: Оценка нематериальных активов (Аудит)


Реферат: Вредные привычки как разрушители здоровья (Спорт)


Реферат: Московский метрополитен (Москвоведение)


Реферат: Технологии социальной деятельности (Менеджмент)


Реферат: Защита рабочих и служащих объекта в чрезвычайных ситуациях (Безопасность жизнедеятельности)


Реферат: Преддипломная производственная практика в АО "КТЖ" (Бухгалтерский учет)


Реферат: Общероссийские классификаторы (Менеджмент)


Реферат: Шанс Атлантиде (История)


Реферат: Основы документационной системы управления (Предпринимательство)


Реферат: Проект социологического иследования на тему "Изменение отношения жителей Москвы к работе милиции в 1990 - 2000 гг." (Социология)


Реферат: Петровская кунсткамера (История)


Реферат: Графика русского языка до и после Кирилла (Литература)


Реферат: Великое посольство и его значение (История)


Реферат: Николай Второй - последний российский самодержец (виновник или жертва) (Исторические личности)


Реферат: Разработка тестов и дидактических материалов по предмету "Чрезвычайные ситуации природного характера" (Безопасность жизнедеятельности)


Реферат: ГОСТ (Технология)



Copyright © GeoRUS, Геологические сайты альтруист